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Preface
Objective of the Book

The first edition of Basic Econometrics was published thirty years ago. Over the years,
there have been important developments in the theory and practice of econometrics. In
each of the subsequent editions, I have tried to incorporate the major developments in the
field. The fifth edition continues that tradition.

What has not changed, however, over all these years is my firm belief that econometrics
can be taught to the beginner in an intuitive and informative way without resorting to
matrix algebra, calculus, or statistics beyond the introductory level. Some subject material
is inherently technical. In that case I have put the material in the appropriate appendix or
refer the reader to the appropriate sources. Even then, I have tried to simplify the technical
material so that the reader can get an intuitive understanding of this material.

I am pleasantly surprised not only by the longevity of this book but also by the fact that
the book is widely used not only by students of economics and finance but also by students
and researchers in the fields of politics, international relations, agriculture, and health
sciences. All these students will find the new edition with its expanded topics and concrete
applications very useful. In this edition I have paid even more attention to the relevance and
timeliness of the real data used in the text. In fact, I have added about fifteen new illustra-
tive examples and more than thirty new end-of-chapter exercises. Also, I have updated
the data for about two dozen of the previous edition’s examples and more than twenty
exercises.

Although I am in the eighth decade of my life, I have not lost my love for econometrics,
and I strive to keep up with the major developments in the field. To assist me in this
endeavor, I am now happy to have Dr. Dawn Porter, Assistant Professor of Statistics at the
Marshall School of Business at the University of Southern California in Los Angeles, as
my co-author. Both of us have been deeply involved in bringing the fifth edition of Basic
Econometrics to fruition. 

Major Features of the Fifth Edition

Before discussing the specific changes in the various chapters, the following features of the
new edition are worth noting:

1. Practically all of the data used in the illustrative examples have been updated. 

2. Several new examples have been added.

3. In several chapters, we have included extended concluding examples that illustrate the
various points made in the text.

4. Concrete computer printouts of several examples are included in the book. Most of these
results are based on EViews (version 6) and STATA (version 10), as well as MINITAB
(version 15).

5. Several new diagrams and graphs are included in various chapters.

6. Several new data-based exercises are included in the various chapters. 

7. Small-sized data are included in the book, but large sample data are posted on the book’s
website, thereby minimizing the size of the text. The website will also publish all of the
data used in the book and will be periodically updated.

xvi
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8. In a few chapters, we have included class exercises in which students are encouraged to
obtain their own data and implement the various techniques discussed in the book. Some
Monte Carlo simulations are also included in the book.

Specific Changes to the Fifth Edition

Some chapter-specific changes are as follows:

1. The assumptions underlying the classical linear regression model (CLRM) introduced
in Chapter 3 now make a careful distinction between fixed regressors (explanatory
variables) and random regressors. We discuss the importance of the distinction.

2. The appendix to Chapter 6 discusses the properties of logarithms, the Box-Cox trans-
formations, and various growth formulas.

3. Chapter 7 now discusses not only the marginal impact of a single regressor on the
dependent variable but also the impacts of simultaneous changes of all the explanatory
variables on the dependent variable. This chapter has also been reorganized in the same
structure as the assumptions from Chapter 3.

4. A comparison of the various tests of heteroscedasticity is given in Chapter 11.

5. There is a new discussion of the impact of structural breaks on autocorrelation in
Chapter 12.

6. New topics included in Chapter 13 are missing data, non-normal error term, and
stochastic, or random, regressors. 

7. A non-linear regression model discussed in Chapter 14 has a concrete application of
the Box-Cox transformation.

8. Chapter 15 contains several new examples that illustrate the use of logit and probit
models in various fields.

9. Chapter 16 on panel data regression models has been thoroughly revised and illus-
trated with several applications.

10. An extended discussion of Sims and Granger causality tests is now included in Chap-
ter 17.

11. Stationary and non-stationary time series, as well as some of the problems associated
with various tests of stationarity, are now thoroughly discussed in Chapter 21.

12. Chapter 22 includes a discussion on why taking the first differences of a time series
for the purpose of making it stationary may not be the appropriate strategy in some
situations.

Besides these specific changes, errors and misprints in the previous editions have been cor-
rected and the discussions of several topics in the various chapters have been streamlined. 

Organization and Options

The extensive coverage in this edition gives the instructor substantial flexibility in choos-
ing topics that are appropriate to the intended audience. Here are suggestions about how
this book may be used.

One-semester course for the nonspecialist: Appendix A, Chapters 1 through 9, an
overview of Chapters 10, 11, 12 (omitting all the proofs).

One-semester course for economics majors: Appendix A, Chapters 1 through 13.
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Two-semester course for economics majors: Appendices A, B, C, Chapters 1 to 22.
Chapters 14 and 16 may be covered on an optional basis. Some of the technical appen-
dices may be omitted.

Graduate and postgraduate students and researchers: This book is a handy refer-
ence book on the major themes in econometrics.

Supplements

A comprehensive website contains the following supplementary material:

–Data from the text, as well as additional large set data referenced in the book; the data
will be periodically updated by the authors.

–A Solutions Manual, written by Dawn Porter, providing answers to all of the
questions and problems throughout the text.

–A digital image library containing all of the graphs and figures from the text.

For more information, please go to www.mhhe.com/gujarati5e
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1

I.1 What Is Econometrics?

Literally interpreted, econometrics means “economic measurement.” Although measure-
ment is an important part of econometrics, the scope of econometrics is much broader, as
can be seen from the following quotations:

Econometrics, the result of a certain outlook on the role of economics, consists of the applica-
tion of mathematical statistics to economic data to lend empirical support to the models
constructed by mathematical economics and to obtain numerical results.1

. . . econometrics may be defined as the quantitative analysis of actual economic phenomena
based on the concurrent development of theory and observation, related by appropriate
methods of inference.2

Econometrics may be defined as the social science in which the tools of economic theory,
mathematics, and statistical inference are applied to the analysis of economic phenomena.3

Econometrics is concerned with the empirical determination of economic laws.4

The art of the econometrician consists in finding the set of assumptions that are both suffi-
ciently specific and sufficiently realistic to allow him to take the best possible advantage of the
data available to him.5

Econometricians . . . are a positive help in trying to dispel the poor public image of economics
(quantitative or otherwise) as a subject in which empty boxes are opened by assuming the
existence of can-openers to reveal contents which any ten economists will interpret in
11 ways.6

The method of econometric research aims, essentially, at a conjunction of economic theory
and actual measurements, using the theory and technique of statistical inference as a bridge
pier.7

1Gerhard Tintner, Methodology of Mathematical Economics and Econometrics, The University of Chicago
Press, Chicago, 1968, p. 74.
2P. A. Samuelson, T. C. Koopmans, and J. R. N. Stone, “Report of the Evaluative Committee for Econo-
metrica,” Econometrica, vol. 22, no. 2, April 1954, pp. 141–146.
3Arthur S. Goldberger, Econometric Theory, John Wiley & Sons, New York, 1964, p. 1.
4H. Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, p. 1.
5E. Malinvaud, Statistical Methods of Econometrics, Rand McNally, Chicago, 1966, p. 514.
6Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar Publishing, Hants,
England, 1990, p. 54.
7T. Haavelmo, “The Probability Approach in Econometrics,” Supplement to Econometrica, vol. 12,
1944, preface p. iii.

Introduction
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2 Basic Econometrics

I.2 Why a Separate Discipline?

As the preceding definitions suggest, econometrics is an amalgam of economic theory,
mathematical economics, economic statistics, and mathematical statistics. Yet the subject
deserves to be studied in its own right for the following reasons.

Economic theory makes statements or hypotheses that are mostly qualitative in nature.
For example, microeconomic theory states that, other things remaining the same, a reduc-
tion in the price of a commodity is expected to increase the quantity demanded of that com-
modity. Thus, economic theory postulates a negative or inverse relationship between the
price and quantity demanded of a commodity. But the theory itself does not provide any
numerical measure of the relationship between the two; that is, it does not tell by how much
the quantity will go up or down as a result of a certain change in the price of the commod-
ity. It is the job of the econometrician to provide such numerical estimates. Stated differ-
ently, econometrics gives empirical content to most economic theory.

The main concern of mathematical economics is to express economic theory in mathe-
matical form (equations) without regard to measurability or empirical verification of the
theory. Econometrics, as noted previously, is mainly interested in the empirical verification
of economic theory. As we shall see, the econometrician often uses the mathematical
equations proposed by the mathematical economist but puts these equations in such a form
that they lend themselves to empirical testing. And this conversion of mathematical into
econometric equations requires a great deal of ingenuity and practical skill.

Economic statistics is mainly concerned with collecting, processing, and presenting
economic data in the form of charts and tables. These are the jobs of the economic statisti-
cian. It is he or she who is primarily responsible for collecting data on gross national
product (GNP), employment, unemployment, prices, and so on. The data thus collected
constitute the raw data for econometric work. But the economic statistician does not go any
further, not being concerned with using the collected data to test economic theories. Of
course, one who does that becomes an econometrician.

Although mathematical statistics provides many tools used in the trade, the econometri-
cian often needs special methods in view of the unique nature of most economic data,
namely, that the data are not generated as the result of a controlled experiment. The econo-
metrician, like the meteorologist, generally depends on data that cannot be controlled
directly. As Spanos correctly observes:

In econometrics the modeler is often faced with observational as opposed to experimental
data. This has two important implications for empirical modeling in econometrics. First, the
modeler is required to master very different skills than those needed for analyzing experimen-
tal data. . . . Second, the separation of the data collector and the data analyst requires the mod-
eler to familiarize himself/herself thoroughly with the nature and structure of data in question.8

I.3 Methodology of Econometrics

How do econometricians proceed in their analysis of an economic problem? That is, what
is their methodology? Although there are several schools of thought on econometric
methodology, we present here the traditional or classical methodology, which still domi-
nates empirical research in economics and other social and behavioral sciences.9

8Aris Spanos, Probability Theory and Statistical Inference: Econometric Modeling with Observational Data,
Cambridge University Press, United Kingdom, 1999, p. 21.
9For an enlightening, if advanced, discussion on econometric methodology, see David F. Hendry,
Dynamic Econometrics, Oxford University Press, New York, 1995. See also Aris Spanos, op. cit.
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Introduction 3

Broadly speaking, traditional econometric methodology proceeds along the following
lines:

1. Statement of theory or hypothesis.

2. Specification of the mathematical model of the theory.

3. Specification of the statistical, or econometric, model.

4. Obtaining the data.

5. Estimation of the parameters of the econometric model.

6. Hypothesis testing.

7. Forecasting or prediction.

8. Using the model for control or policy purposes.

To illustrate the preceding steps, let us consider the well-known Keynesian theory of
consumption.

1. Statement of Theory or Hypothesis
Keynes stated:

The fundamental psychological law . . . is that men [women] are disposed, as a rule and on
average, to increase their consumption as their income increases, but not as much as the
increase in their income.10

In short, Keynes postulated that the marginal propensity to consume (MPC), the rate of
change of consumption for a unit (say, a dollar) change in income, is greater than zero but
less than 1.

2. Specification of the Mathematical Model of Consumption
Although Keynes postulated a positive relationship between consumption and income,
he did not specify the precise form of the functional relationship between the two. For
simplicity, a mathematical economist might suggest the following form of the Keynesian
consumption function:

Y = β1 + β2 X 0 < β2 < 1 (I.3.1)

where Y = consumption expenditure and X = income, and where β1 and β2, known as the
parameters of the model, are, respectively, the intercept and slope coefficients.

The slope coefficient β2 measures the MPC. Geometrically, Equation I.3.1 is as shown
in Figure I.1. This equation, which states that consumption is linearly related to income, is
an example of a mathematical model of the relationship between consumption and income
that is called the consumption function in economics. A model is simply a set of mathe-
matical equations. If the model has only one equation, as in the preceding example, it is
called a single-equation model, whereas if it has more than one equation, it is known as a
multiple-equation model (the latter will be considered later in the book).

In Eq. (I.3.1) the variable appearing on the left side of the equality sign is called the
dependent variable and the variable(s) on the right side is called the independent, or
explanatory, variable(s). Thus, in the Keynesian consumption function, Eq. (I.3.1), con-
sumption (expenditure) is the dependent variable and income is the explanatory variable.

10John Maynard Keynes, The General Theory of Employment, Interest and Money, Harcourt Brace
Jovanovich, New York, 1936, p. 96.
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4 Basic Econometrics

3. Specification of the Econometric Model
of Consumption

The purely mathematical model of the consumption function given in Eq. (I.3.1) is of lim-
ited interest to the econometrician, for it assumes that there is an exact or deterministic
relationship between consumption and income. But relationships between economic vari-
ables are generally inexact. Thus, if we were to obtain data on consumption expenditure and
disposable (i.e., aftertax) income of a sample of, say, 500 American families and plot these
data on a graph paper with consumption expenditure on the vertical axis and disposable in-
come on the horizontal axis, we would not expect all 500 observations to lie exactly on the
straight line of Eq. (I.3.1) because, in addition to income, other variables affect consump-
tion expenditure. For example, size of family, ages of the members in the family, family
religion, etc., are likely to exert some influence on consumption.

To allow for the inexact relationships between economic variables, the econometrician
would modify the deterministic consumption function in Eq. (I.3.1) as follows:

Y = β1 + β2 X + u (I.3.2)

where u, known as the disturbance, or error, term, is a random (stochastic) variable that
has well-defined probabilistic properties. The disturbance term u may well represent all
those factors that affect consumption but are not taken into account explicitly.

Equation I.3.2 is an example of an econometric model. More technically, it is an exam-
ple of a linear regression model, which is the major concern of this book. The economet-
ric consumption function hypothesizes that the dependent variable Y (consumption) is
linearly related to the explanatory variable X (income) but that the relationship between the
two is not exact; it is subject to individual variation.

The econometric model of the consumption function can be depicted as shown in
Figure I.2.

FIGURE I.1
Keynesian 
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FIGURE I.2
Econometric model
of the Keynesian
consumption function.
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4. Obtaining Data
To estimate the econometric model given in Eq. (I.3.2), that is, to obtain the numerical
values of β1 and β2, we need data. Although we will have more to say about the crucial
importance of data for economic analysis in the next chapter, for now let us look at the
data given in Table I.1, which relate to the U.S. economy for the period 1960–2005. The
Y variable in this table is the aggregate (for the economy as a whole) personal consumption
expenditure (PCE) and the X variable is gross domestic product (GDP), a measure of
aggregate income, both measured in billions of 2000 dollars. Therefore, the data are in
“real” terms; that is, they are measured in constant (2000) prices. The data are plotted
in Figure I.3 (cf. Figure I.2). For the time being neglect the line drawn in the figure.

5. Estimation of the Econometric Model
Now that we have the data, our next task is to estimate the parameters of the consumption
function. The numerical estimates of the parameters give empirical content to the con-
sumption function. The actual mechanics of estimating the parameters will be discussed in
Chapter 3. For now, note that the statistical technique of regression analysis is the main
tool used to obtain the estimates. Using this technique and the data given in Table I.1, we
obtain the following estimates of β1 and β2, namely, −299.5913 and 0.7218. Thus, the
estimated consumption function is:

Ŷt = −299.5913 + 0.7218Xt (I.3.3)

The hat on the Y indicates that it is an estimate.11 The estimated consumption function (i.e.,
regression line) is shown in Figure I.3.

11As a matter of convention, a hat over a variable or parameter indicates that it is an estimated value.
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6 Basic Econometrics

Year PCE(Y) GDP(X)

1960 1597.4 2501.8
1961 1630.3 2560.0
1962 1711.1 2715.2
1963 1781.6 2834.0
1964 1888.4 2998.6
1965 2007.7 3191.1
1966 2121.8 3399.1
1967 2185.0 3484.6
1968 2310.5 3652.7
1969 2396.4 3765.4
1970 2451.9 3771.9
1971 2545.5 3898.6
1972 2701.3 4105.0
1973 2833.8 4341.5
1974 2812.3 4319.6
1975 2876.9 4311.2
1976 3035.5 4540.9
1977 3164.1 4750.5
1978 3303.1 5015.0
1979 3383.4 5173.4
1980 3374.1 5161.7
1981 3422.2 5291.7
1982 3470.3 5189.3
1983 3668.6 5423.8
1984 3863.3 5813.6
1985 4064.0 6053.7
1986 4228.9 6263.6
1987 4369.8 6475.1
1988 4546.9 6742.7
1989 4675.0 6981.4
1990 4770.3 7112.5
1991 4778.4 7100.5
1992 4934.8 7336.6
1993 5099.8 7532.7
1994 5290.7 7835.5
1995 5433.5 8031.7
1996 5619.4 8328.9
1997 5831.8 8703.5
1998 6125.8 9066.9
1999 6438.6 9470.3
2000 6739.4 9817.0
2001 6910.4 9890.7
2002 7099.3 10048.8
2003 7295.3 10301.0
2004 7577.1 10703.5
2005 7841.2 11048.6

TABLE I.1
Data on Y (Personal
Consumption
Expenditure) and
X (Gross Domestic
Product, 1960–2005),
both in 2000 Billions
of Dollars

Source: Economic Report of
the President, 2007, Table B–2,
p. 230.
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Introduction 7

As Figure I.3 shows, the regression line fits the data quite well in that the data points are
very close to the regression line. From this figure we see that for the period 1960–2005 the
slope coefficient (i.e., the MPC) was about 0.72, suggesting that for the sample period an
increase in real income of one dollar led, on average, to an increase of about 72 cents in real
consumption expenditure.12 We say on average because the relationship between con-
sumption and income is inexact; as is clear from Figure I.3, not all the data points lie
exactly on the regression line. In simple terms we can say that, according to our data, the
average, or mean, consumption expenditure went up by about 72 cents for a dollar’s
increase in real income.

6. Hypothesis Testing
Assuming that the fitted model is a reasonably good approximation of reality, we have to
develop suitable criteria to find out whether the estimates obtained in, say, Equation I.3.3
are in accord with the expectations of the theory that is being tested. According to “posi-
tive” economists like Milton Friedman, a theory or hypothesis that is not verifiable by
appeal to empirical evidence may not be admissible as a part of scientific enquiry.13

As noted earlier, Keynes expected the MPC to be positive but less than 1. In our exam-
ple we found the MPC to be about 0.72. But before we accept this finding as confirmation
of Keynesian consumption theory, we must enquire whether this estimate is sufficiently
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FIGURE I.3
Personal consumption
expenditure (Y ) in
relation to GDP (X),
1960–2005, in billions
of 2000 dollars.

12Do not worry now about how these values were obtained. As we show in Chapter 3, the statistical
method of least squares has produced these estimates. Also, for now do not worry about the
negative value of the intercept.
13See Milton Friedman, “The Methodology of Positive Economics,” Essays in Positive Economics,
University of Chicago Press, Chicago, 1953.
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8 Basic Econometrics

below unity to convince us that this is not a chance occurrence or peculiarity of the partic-
ular data we have used. In other words, is 0.72 statistically less than 1? If it is, it may sup-
port Keynes’s theory.

Such confirmation or refutation of economic theories on the basis of sample evidence is
based on a branch of statistical theory known as statistical inference (hypothesis testing).
Throughout this book we shall see how this inference process is actually conducted.

7. Forecasting or Prediction
If the chosen model does not refute the hypothesis or theory under consideration, we may
use it to predict the future value(s) of the dependent, or forecast, variable Y on the basis of
the known or expected future value(s) of the explanatory, or predictor, variable X.

To illustrate, suppose we want to predict the mean consumption expenditure for 2006.
The GDP value for 2006 was 11319.4 billion dollars.14 Putting this GDP figure on the
right-hand side of Eq. (I.3.3), we obtain:

Ŷ2006 = −299.5913 + 0.7218 (11319.4)

= 7870.7516
(I.3.4)

or about 7870 billion dollars. Thus, given the value of the GDP, the mean, or average, fore-
cast consumption expenditure is about 7870 billion dollars. The actual value of the con-
sumption expenditure reported in 2006 was 8044 billion dollars. The estimated model
Eq. (I.3.3) thus underpredicted the actual consumption expenditure by about 174 billion
dollars. We could say the forecast error is about 174 billion dollars, which is about
1.5 percent of the actual GDP value for 2006. When we fully discuss the linear regression
model in subsequent chapters, we will try to find out if such an error is “small” or “large.”
But what is important for now is to note that such forecast errors are inevitable given the
statistical nature of our analysis.

There is another use of the estimated model Eq. (I.3.3). Suppose the president decides
to propose a reduction in the income tax. What will be the effect of such a policy on income
and thereby on consumption expenditure and ultimately on employment?

Suppose that, as a result of the proposed policy change, investment expenditure in-
creases. What will be the effect on the economy? As macroeconomic theory shows, the
change in income following, say, a dollar’s worth of change in investment expenditure is
given by the income multiplier M, which is defined as

M = 1

1 − MPC
(I.3.5)

If we use the MPC of 0.72 obtained in Eq. (I.3.3), this multiplier becomes about M = 3.57.

That is, an increase (decrease) of a dollar in investment will eventually lead to more than a
threefold increase (decrease) in income; note that it takes time for the multiplier to work.

The critical value in this computation is MPC, for the multiplier depends on it. And this
estimate of the MPC can be obtained from regression models such as Eq. (I.3.3). Thus, a
quantitative estimate of MPC provides valuable information for policy purposes. Knowing
MPC, one can predict the future course of income, consumption expenditure, and employ-
ment following a change in the government’s fiscal policies.

14Data on PCE and GDP were available for 2006 but we purposely left them out to illustrate the topic
discussed in this section. As we will discuss in subsequent chapters, it is a good idea to save a portion
of the data to find out how well the fitted model predicts the out-of-sample observations.
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Introduction 9

8. Use of the Model for Control or Policy Purposes
Suppose we have the estimated consumption function given in Eq. (I.3.3). Suppose further
the government believes that consumer expenditure of about 8750 (billions of 2000 dollars)
will keep the unemployment rate at its current level of about 4.2 percent (early 2006). What
level of income will guarantee the target amount of consumption expenditure?

If the regression results given in Eq. (I.3.3) seem reasonable, simple arithmetic will
show that

8750 = −299.5913 + 0.7218(GDP2006) (I.3.6)

which gives X = 12537, approximately. That is, an income level of about 12537 (billion)
dollars, given an MPC of about 0.72, will produce an expenditure of about 8750 billion
dollars.

As these calculations suggest, an estimated model may be used for control, or policy,
purposes. By appropriate fiscal and monetary policy mix, the government can manipulate
the control variable X to produce the desired level of the target variable Y.

Figure I.4 summarizes the anatomy of classical econometric modeling.

Choosing among Competing Models
When a governmental agency (e.g., the U.S. Department of Commerce) collects economic
data, such as that shown in Table I.1, it does not necessarily have any economic theory in
mind. How then does one know that the data really support the Keynesian theory of con-
sumption? Is it because the Keynesian consumption function (i.e., the regression line)
shown in Figure I.3 is extremely close to the actual data points? Is it possible that another
consumption model (theory) might equally fit the data as well? For example, Milton
Friedman has developed a model of consumption, called the permanent income

Estimation of econometric model

Econometric model of theory

Economic theory

Data

Forecasting or prediction

Using the model for
control or policy purposes

Hypothesis testing

Mathematical model of theory

FIGURE I.4
Anatomy of
econometric modeling.
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10 Basic Econometrics

hypothesis.15 Robert Hall has also developed a model of consumption, called the life-cycle
permanent income hypothesis.16 Could one or both of these models also fit the data in
Table I.1?

In short, the question facing a researcher in practice is how to choose among competing
hypotheses or models of a given phenomenon, such as the consumption–income relation-
ship. As Miller contends:

No encounter with data is [a] step towards genuine confirmation unless the hypothesis does a
better job of coping with the data than some natural rival. . . . What strengthens a hypothesis,
here, is a victory that is, at the same time, a defeat for a plausible rival.17

How then does one choose among competing models or hypotheses? Here the advice given
by Clive Granger is worth keeping in mind:18

I would like to suggest that in the future, when you are presented with a new piece of theory or
empirical model, you ask these questions:

(i) What purpose does it have? What economic decisions does it help with?

(ii) Is there any evidence being presented that allows me to evaluate its quality compared to
alternative theories or models?

I think attention to such questions will strengthen economic research and discussion.

As we progress through this book, we will come across several competing hypotheses
trying to explain various economic phenomena. For example, students of economics are
familiar with the concept of the production function, which is basically a relationship
between output and inputs (say, capital and labor). In the literature, two of the best known
are the Cobb–Douglas and the constant elasticity of substitution production functions.
Given the data on output and inputs, we will have to find out which of the two production
functions, if any, fits the data well.

The eight-step classical econometric methodology discussed above is neutral in the
sense that it can be used to test any of these rival hypotheses.

Is it possible to develop a methodology that is comprehensive enough to include
competing hypotheses? This is an involved and controversial topic. We will discuss it in
Chapter 13, after we have acquired the necessary econometric theory.

I.4 Types of Econometrics

As the classificatory scheme in Figure I.5 suggests, econometrics may be divided into two
broad categories: theoretical econometrics and applied econometrics. In each category,
one can approach the subject in the classical or Bayesian tradition. In this book the
emphasis is on the classical approach. For the Bayesian approach, the reader may consult
the references given at the end of the chapter.

15Milton Friedman, A Theory of Consumption Function, Princeton University Press, Princeton, N.J.,
1957.
16R. Hall, “Stochastic Implications of the Life Cycle Permanent Income Hypothesis: Theory and
Evidence,” Journal of Political Economy, vol. 86, 1978, pp. 971–987.
17R. W. Miller, Fact and Method: Explanation, Confirmation, and Reality in the Natural and Social
Sciences, Princeton University Press, Princeton, N.J., 1978, p. 176.
18Clive W. J. Granger, Empirical Modeling in Economics, Cambridge University Press, U.K., 1999, p. 58.
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Introduction 11

Theoretical econometrics is concerned with the development of appropriate methods for
measuring economic relationships specified by econometric models. In this aspect, econo-
metrics leans heavily on mathematical statistics. For example, one of the methods used
extensively in this book is least squares. Theoretical econometrics must spell out the
assumptions of this method, its properties, and what happens to these properties when one
or more of the assumptions of the method are not fulfilled.

In applied econometrics we use the tools of theoretical econometrics to study some
special field(s) of economics and business, such as the production function, investment
function, demand and supply functions, portfolio theory, etc.

This book is concerned largely with the development of econometric methods, their
assumptions, their uses, and their limitations. These methods are illustrated with examples
from various areas of economics and business. But this is not a book of applied economet-
rics in the sense that it delves deeply into any particular field of economic application. That
job is best left to books written specifically for this purpose. References to some of these
books are provided at the end of this book.

I.5 Mathematical and Statistical Prerequisites

Although this book is written at an elementary level, the author assumes that the reader is
familiar with the basic concepts of statistical estimation and hypothesis testing. However, a
broad but nontechnical overview of the basic statistical concepts used in this book is pro-
vided in Appendix A for the benefit of those who want to refresh their knowledge. Insofar
as mathematics is concerned, a nodding acquaintance with the notions of differential
calculus is desirable, although not essential. Although most graduate level books in econo-
metrics make heavy use of matrix algebra, I want to make it clear that it is not needed to
study this book. It is my strong belief that the fundamental ideas of econometrics can be
conveyed without the use of matrix algebra. However, for the benefit of the mathematically
inclined student, Appendix C gives the summary of basic regression theory in matrix
notation. For these students, Appendix B provides a succinct summary of the main results
from matrix algebra.

I.6 The Role of the Computer

Regression analysis, the bread-and-butter tool of econometrics, these days is unthinkable
without the computer and some access to statistical software. (Believe me, I grew up in the
generation of the slide rule!) Fortunately, several excellent regression packages are com-
mercially available, both for the mainframe and the microcomputer, and the list is growing
by the day. Regression software packages, such as ET, LIMDEP, SHAZAM, MICRO
TSP, MINITAB, EVIEWS, SAS, SPSS, STATA, Microfit, PcGive, and BMD have most
of the econometric techniques and tests discussed in this book.

Econometrics

Theoretical

Classical Bayesian

Applied

Classical Bayesian

FIGURE I.5
Categories of
econometrics.
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12 Basic Econometrics

In this book, from time to time, the reader will be asked to conduct Monte Carlo
experiments using one or more of the statistical packages. Monte Carlo experiments are
“fun” exercises that will enable the reader to appreciate the properties of several statistical
methods discussed in this book. The details of the Monte Carlo experiments will be
discussed at appropriate places.

I.7 Suggestions for Further Reading

The topic of econometric methodology is vast and controversial. For those interested in this
topic, I suggest the following books:

Neil de Marchi and Christopher Gilbert, eds., History and Methodology of Economet-
rics, Oxford University Press, New York, 1989. This collection of readings discusses some
early work on econometric methodology and has an extended discussion of the British
approach to econometrics relating to time series data, that is, data collected over a period
of time.

Wojciech W. Charemza and Derek F. Deadman, New Directions in Econometric
Practice: General to Specific Modelling, Cointegration and Vector Autogression, 2d ed.,
Edward Elgar Publishing Ltd., Hants, England, 1997. The authors of this book critique the
traditional approach to econometrics and give a detailed exposition of new approaches to
econometric methodology.

Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar
Publishing Ltd., Hants, England, 1990. The book provides a somewhat balanced discussion
of the various methodological approaches to econometrics, with renewed allegiance to
traditional econometric methodology.

Mary S. Morgan, The History of Econometric Ideas, Cambridge University Press, New
York, 1990. The author provides an excellent historical perspective on the theory and prac-
tice of econometrics, with an in-depth discussion of the early contributions of Haavelmo
(1990 Nobel Laureate in Economics) to econometrics. In the same spirit, David F. Hendry
and Mary S. Morgan, The Foundation of Econometric Analysis, Cambridge University
Press, U.K., 1995, have collected seminal writings in econometrics to show the evolution of
econometric ideas over time.

David Colander and Reuven Brenner, eds., Educating Economists, University of
Michigan Press, Ann Arbor, Michigan, 1992. This text presents a critical, at times agnostic,
view of economic teaching and practice.

For Bayesian statistics and econometrics, the following books are very useful: John H.
Dey, Data in Doubt, Basil Blackwell Ltd., Oxford University Press, England, 1985; Peter
M. Lee, Bayesian Statistics: An Introduction, Oxford University Press, England, 1989; and
Dale J. Porier, Intermediate Statistics and Econometrics: A Comparative Approach, MIT
Press, Cambridge, Massachusetts, 1995. Arnold Zeller, An Introduction to Bayesian Infer-
ence in Econometrics, John Wiley & Sons, New York, 1971, is an advanced reference book.
Another advanced reference book is the Palgrave Handbook of Econometrics: Volume 1:
Econometric Theory, edited by Terence C. Mills and Kerry Patterson, Palgrave Macmillan,
New York, 2007.
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Part 

Part 1 of this text introduces single-equation regression models. In these models, one
variable, called the dependent variable, is expressed as a linear function of one or more
other variables, called the explanatory variables. In such models it is assumed implicitly
that causal relationships, if any, between the dependent and explanatory variables flow in
one direction only, namely, from the explanatory variables to the dependent variable.

In Chapter 1, we discuss the historical as well as the modern interpretation of the term
regression and illustrate the difference between the two interpretations with several exam-
ples drawn from economics and other fields.

In Chapter 2, we introduce some fundamental concepts of regression analysis with the
aid of the two-variable linear regression model, a model in which the dependent variable is
expressed as a linear function of only a single explanatory variable.

In Chapter 3, we continue to deal with the two-variable model and introduce what is
known as the classical linear regression model, a model that makes several simplifying
assumptions. With these assumptions, we introduce the method of ordinary least squares
(OLS) to estimate the parameters of the two-variable regression model. The method of OLS
is simple to apply, yet it has some very desirable statistical properties.

In Chapter 4, we introduce the (two-variable) classical normal linear regression model,
a model that assumes that the random dependent variable follows the normal probability
distribution. With this assumption, the OLS estimators obtained in Chapter 3 possess
some stronger statistical properties than the nonnormal classical linear regression model—
properties that enable us to engage in statistical inference, namely, hypothesis testing.

Chapter 5 is devoted to the topic of hypothesis testing. In this chapter, we try to find out
whether the estimated regression coefficients are compatible with the hypothesized values
of such coefficients, the hypothesized values being suggested by theory and/or prior
empirical work.

Chapter 6 considers some extensions of the two-variable regression model. In particu-
lar, it discusses topics such as (1) regression through the origin, (2) scaling and units of
measurement, and (3) functional forms of regression models such as double-log, semilog,
and reciprocal models.

1Single-Equation 
Regression Models
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14 Part One Single-Equation Regression Models

In Chapter 7, we consider the multiple regression model, a model in which there is
more than one explanatory variable, and show how the method of OLS can be extended to
estimate the parameters of such models.

In Chapter 8, we extend the concepts introduced in Chapter 5 to the multiple regression
model and point out some of the complications arising from the introduction of several
explanatory variables.

Chapter 9 on dummy, or qualitative, explanatory variables concludes Part 1 of the text.
This chapter emphasizes that not all explanatory variables need to be quantitative (i.e., ratio
scale). Variables, such as gender, race, religion, nationality, and region of residence, can-
not be readily quantified, yet they play a valuable role in explaining many an economic
phenomenon.
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As mentioned in the Introduction, regression is a main tool of econometrics, and in this
chapter we consider very briefly the nature of this tool.

1.1 Historical Origin of the Term Regression

The term regression was introduced by Francis Galton. In a famous paper, Galton found
that, although there was a tendency for tall parents to have tall children and for short par-
ents to have short children, the average height of children born of parents of a given height
tended to move or “regress” toward the average height in the population as a whole.1 In
other words, the height of the children of unusually tall or unusually short parents tends to
move toward the average height of the population. Galton’s law of universal regression was
confirmed by his friend Karl Pearson, who collected more than a thousand records of
heights of members of family groups.2 He found that the average height of sons of a group
of tall fathers was less than their fathers’ height and the average height of sons of a group
of short fathers was greater than their fathers’ height, thus “regressing” tall and short sons
alike toward the average height of all men. In the words of Galton, this was “regression to
mediocrity.”

1.2 The Modern Interpretation of Regression

The modern interpretation of regression is, however, quite different. Broadly speaking, we
may say

Regression analysis is concerned with the study of the dependence of one variable, the
dependent variable, on one or more other variables, the explanatory variables, with a view to
estimating and/or predicting the (population) mean or average value of the former in terms of
the known or fixed (in repeated sampling) values of the latter.

Chapter

1Francis Galton, “Family Likeness in Stature,” Proceedings of Royal Society, London, vol. 40, 1886,
pp. 42–72.
2K. Pearson and A. Lee, “On the Laws of Inheritance,’’ Biometrika, vol. 2, Nov. 1903, pp. 357–462.

1
The Nature of
Regression Analysis
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16 Part One Single-Equation Regression Models

The full import of this view of regression analysis will become clearer as we progress, but
a few simple examples will make the basic concept quite clear.

Examples
1. Reconsider Galton’s law of universal regression. Galton was interested in finding out

why there was a stability in the distribution of heights in a population. But in the modern
view our concern is not with this explanation but rather with finding out how the average
height of sons changes, given the fathers’ height. In other words, our concern is with pre-
dicting the average height of sons knowing the height of their fathers. To see how this can
be done, consider Figure 1.1, which is a scatter diagram, or scattergram. This figure
shows the distribution of heights of sons in a hypothetical population corresponding to the
given or fixed values of the father’s height. Notice that corresponding to any given height of
a father is a range or distribution of the heights of the sons. However, notice that despite the
variability of the height of sons for a given value of father’s height, the average height of
sons generally increases as the height of the father increases. To show this clearly, the cir-
cled crosses in the figure indicate the average height of sons corresponding to a given
height of the father. Connecting these averages, we obtain the line shown in the figure. This
line, as we shall see, is known as the regression line. It shows how the average height of
sons increases with the father’s height.3

2. Consider the scattergram in Figure 1.2, which gives the distribution in a hypothetical
population of heights of boys measured at fixed ages. Corresponding to any given age, we
have a range, or distribution, of heights. Obviously, not all boys of a given age are likely to
have identical heights. But height on the average increases with age (of course, up to a

3At this stage of the development of the subject matter, we shall call this regression line simply the
line connecting the mean, or average, value of the dependent variable (son’s height) corresponding to
the given value of the explanatory variable (father’s height). Note that this line has a positive slope but
the slope is less than 1, which is in conformity with Galton’s regression to mediocrity. (Why?)
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Chapter 1 The Nature of Regression Analysis 17

certain age), which can be seen clearly if we draw a line (the regression line) through the cir-
cled points that represent the average height at the given ages. Thus, knowing the age, we
may be able to predict from the regression line the average height corresponding to that age.

3. Turning to economic examples, an economist may be interested in studying the de-
pendence of personal consumption expenditure on aftertax or disposable real personal in-
come. Such an analysis may be helpful in estimating the marginal propensity to consume
(MPC), that is, average change in consumption expenditure for, say, a dollar’s worth of
change in real income (see Figure 1.3).

4. A monopolist who can fix the price or output (but not both) may want to find out
the response of the demand for a product to changes in price. Such an experiment may
enable the estimation of the price elasticity (i.e., price responsiveness) of the demand for the
product and may help determine the most profitable price.

5. A labor economist may want to study the rate of change of money wages in relation to
the unemployment rate. The historical data are shown in the scattergram given in Figure 1.3.
The curve in Figure 1.3 is an example of the celebrated Phillips curve relating changes in the
money wages to the unemployment rate. Such a scattergram may enable the labor economist
to predict the average change in money wages given a certain unemployment rate. Such
knowledge may be helpful in stating something about the inflationary process in an econ-
omy, for increases in money wages are likely to be reflected in increased prices.

6. From monetary economics it is known that, other things remaining the same, the
higher the rate of inflation π, the lower the proportion k of their income that people would
want to hold in the form of money, as depicted in Figure 1.4. The slope of this line repre-
sents the change in k given a change in the inflation rate. A quantitative analysis of this
relationship will enable the monetary economist to predict the amount of money, as a
proportion of their income, that people would want to hold at various rates of inflation.

7. The marketing director of a company may want to know how the demand for the
company’s product is related to, say, advertising expenditure. Such a study will be of
considerable help in finding out the elasticity of demand with respect to advertising ex-
penditure, that is, the percent change in demand in response to, say, a 1 percent change in
the advertising budget. This knowledge may be helpful in determining the “optimum”
advertising budget.
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18 Part One Single-Equation Regression Models

8. Finally, an agronomist may be interested in studying the dependence of a particular
crop yield, say, of wheat, on temperature, rainfall, amount of sunshine, and fertilizer. Such
a dependence analysis may enable the prediction or forecasting of the average crop yield,
given information about the explanatory variables.

The reader can supply scores of such examples of the dependence of one variable on one
or more other variables. The techniques of regression analysis discussed in this text are
specially designed to study such dependence among variables.
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Chapter 1 The Nature of Regression Analysis 19

1.3 Statistical versus Deterministic Relationships

From the examples cited in Section 1.2, the reader will notice that in regression analysis
we are concerned with what is known as the statistical, not functional or deterministic,
dependence among variables, such as those of classical physics. In statistical relation-
ships among variables we essentially deal with random or stochastic4 variables, that is,
variables that have probability distributions. In functional or deterministic dependency,
on the other hand, we also deal with variables, but these variables are not random or
stochastic.

The dependence of crop yield on temperature, rainfall, sunshine, and fertilizer, for
example, is statistical in nature in the sense that the explanatory variables, although
certainly important, will not enable the agronomist to predict crop yield exactly because of
errors involved in measuring these variables as well as a host of other factors (variables)
that collectively affect the yield but may be difficult to identify individually. Thus, there is
bound to be some “intrinsic” or random variability in the dependent-variable crop yield that
cannot be fully explained no matter how many explanatory variables we consider.

In deterministic phenomena, on the other hand, we deal with relationships of the type,
say, exhibited by Newton’s law of gravity, which states: Every particle in the universe
attracts every other particle with a force directly proportional to the product of their masses
and inversely proportional to the square of the distance between them. Symbolically,
F = k(m1m2/r2), where F = force, m1 and m2 are the masses of the two particles, r =
distance, and k = constant of proportionality. Another example is Ohm’s law, which states:
For metallic conductors over a limited range of temperature the current C is proportional to
the voltage V; that is, C = ( 1

k )V where 1
k is the constant of proportionality. Other examples

of such deterministic relationships are Boyle’s gas law, Kirchhoff’s law of electricity, and
Newton’s law of motion.

In this text we are not concerned with such deterministic relationships. Of course, if
there are errors of measurement, say, in the k of Newton’s law of gravity, the otherwise
deterministic relationship becomes a statistical relationship. In this situation, force can be
predicted only approximately from the given value of k (and m1, m2, and r), which contains
errors. The variable F in this case becomes a random variable.

1.4 Regression versus Causation

Although regression analysis deals with the dependence of one variable on other variables,
it does not necessarily imply causation. In the words of Kendall and Stuart, “A statistical
relationship, however strong and however suggestive, can never establish causal connec-
tion: our ideas of causation must come from outside statistics, ultimately from some theory
or other.”5

4The word stochastic comes from the Greek word stokhos meaning “a bull’s eye.” The outcome of
throwing darts on a dart board is a stochastic process, that is, a process fraught with misses.
5M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Charles Griffin Publishers, New York,
vol. 2, 1961, chap. 26, p. 279.
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20 Part One Single-Equation Regression Models

In the crop-yield example cited previously, there is no statistical reason to assume that
rainfall does not depend on crop yield. The fact that we treat crop yield as dependent on
rainfall (among other things) is due to nonstatistical considerations: Common sense
suggests that the relationship cannot be reversed, for we cannot control rainfall by varying
crop yield.

In all the examples cited in Section 1.2 the point to note is that a statistical relationship
in itself cannot logically imply causation. To ascribe causality, one must appeal to a priori
or theoretical considerations. Thus, in the third example cited, one can invoke economic
theory in saying that consumption expenditure depends on real income.6

1.5 Regression versus Correlation

Closely related to but conceptually very much different from regression analysis is
correlation analysis, where the primary objective is to measure the strength or degree of
linear association between two variables. The correlation coefficient, which we shall
study in detail in Chapter 3, measures this strength of (linear) association. For example, we
may be interested in finding the correlation (coefficient) between smoking and lung cancer,
between scores on statistics and mathematics examinations, between high school grades
and college grades, and so on. In regression analysis, as already noted, we are not primar-
ily interested in such a measure. Instead, we try to estimate or predict the average value of
one variable on the basis of the fixed values of other variables. Thus, we may want to know
whether we can predict the average score on a statistics examination by knowing a student’s
score on a mathematics examination.

Regression and correlation have some fundamental differences that are worth mention-
ing. In regression analysis there is an asymmetry in the way the dependent and explanatory
variables are treated. The dependent variable is assumed to be statistical, random, or sto-
chastic, that is, to have a probability distribution. The explanatory variables, on the other
hand, are assumed to have fixed values (in repeated sampling),7 which was made explicit in
the definition of regression given in Section 1.2. Thus, in Figure 1.2 we assumed that the
variable age was fixed at given levels and height measurements were obtained at these
levels. In correlation analysis, on the other hand, we treat any (two) variables symmetri-
cally; there is no distinction between the dependent and explanatory variables. After all, the
correlation between scores on mathematics and statistics examinations is the same as that
between scores on statistics and mathematics examinations. Moreover, both variables
are assumed to be random. As we shall see, most of the correlation theory is based on the
assumption of randomness of variables, whereas most of the regression theory to be
expounded in this book is conditional upon the assumption that the dependent variable is
stochastic but the explanatory variables are fixed or nonstochastic.8

6But as we shall see in Chapter 3, classical regression analysis is based on the assumption that the
model used in the analysis is the correct model. Therefore, the direction of causality may be implicit
in the model postulated.
7It is crucial to note that the explanatory variables may be intrinsically stochastic, but for the purpose
of regression analysis we assume that their values are fixed in repeated sampling (that is, X assumes
the same values in various samples), thus rendering them in effect nonrandom or nonstochastic. But
more on this in Chapter 3, Sec. 3.2.
8In advanced treatment of econometrics, one can relax the assumption that the explanatory variables
are nonstochastic (see introduction to Part 2).
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Chapter 1 The Nature of Regression Analysis 21

1.6 Terminology and Notation

Before we proceed to a formal analysis of regression theory, let us dwell briefly on the
matter of terminology and notation. In the literature the terms dependent variable and
explanatory variable are described variously. A representative list is:

Dependent variable Explanatory variable

� �
Explained variable Independent variable

� �
Predictand Predictor

� �
Regressand Regressor

� �
Response Stimulus

� �
Endogenous Exogenous

� �
Outcome Covariate

� �
Controlled variable Control variable

Although it is a matter of personal taste and tradition, in this text we will use the dependent
variable/explanatory variable or the more neutral regressand and regressor terminology.

If we are studying the dependence of a variable on only a single explanatory variable,
such as that of consumption expenditure on real income, such a study is known as simple,
or two-variable, regression analysis. However, if we are studying the dependence of one
variable on more than one explanatory variable, as in the crop-yield, rainfall, temperature,
sunshine, and fertilizer example, it is known as multiple regression analysis. In other
words, in two-variable regression there is only one explanatory variable, whereas in multi-
ple regression there is more than one explanatory variable.

The term random is a synonym for the term stochastic. As noted earlier, a random or
stochastic variable is a variable that can take on any set of values, positive or negative, with
a given probability.9

Unless stated otherwise, the letter Y will denote the dependent variable and the X’s
(X1, X2, . . . , Xk) will denote the explanatory variables, Xk being the kth explanatory
variable. The subscript i or t will denote the ith or the tth observation or value. Xki (or Xkt )
will denote the ith (or tth) observation on variable Xk . N (or T ) will denote the total
number of observations or values in the population, and n (or t) the total number of obser-
vations in a sample. As a matter of convention, the observation subscript i will be used for
cross-sectional data (i.e., data collected at one point in time) and the subscript t will be
used for time series data (i.e., data collected over a period of time). The nature of cross-
sectional and time series data, as well as the important topic of the nature and sources of
data for empirical analysis, is discussed in the following section.

9See Appendix A for formal definition and further details.
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22 Part One Single-Equation Regression Models

1.7 The Nature and Sources of Data for Economic Analysis10

The success of any econometric analysis ultimately depends on the availability of the
appropriate data. It is therefore essential that we spend some time discussing the nature,
sources, and limitations of the data that one may encounter in empirical analysis.

Types of Data
Three types of data may be available for empirical analysis: time series, cross-section, and
pooled (i.e., combination of time series and cross-section) data.

Time Series Data
The data shown in Table 1.1 of the Introduction are an example of time series data. A time
series is a set of observations on the values that a variable takes at different times. Such data
may be collected at regular time intervals, such as daily (e.g., stock prices, weather
reports), weekly (e.g., money supply figures), monthly (e.g., the unemployment rate, the
Consumer Price Index [CPI]), quarterly (e.g., GDP), annually (e.g., government
budgets), quinquennially, that is, every 5 years (e.g., the census of manufactures), or
decennially, that is, every 10 years (e.g., the census of population). Sometime data are
available both quarterly as well as annually, as in the case of the data on GDP and consumer
expenditure. With the advent of high-speed computers, data can now be collected over an
extremely short interval of time, such as the data on stock prices, which can be obtained
literally continuously (the so-called real-time quote).

Although time series data are used heavily in econometric studies, they present special
problems for econometricians. As we will show in chapters on time series econometrics
later on, most empirical work based on time series data assumes that the underlying time
series is stationary. Although it is too early to introduce the precise technical meaning of
stationarity at this juncture, loosely speaking, a time series is stationary if its mean and
variance do not vary systematically over time. To see what this means, consider Figure 1.5,
which depicts the behavior of the M1 money supply in the United States from January 1,
1959, to September, 1999. (The actual data are given in Exercise 1.4.) As you can see from
this figure, the M1 money supply shows a steady upward trend as well as variability over
the years, suggesting that the M1 time series is not stationary.11 We will explore this topic
fully in Chapter 21.

Cross-Section Data
Cross-section data are data on one or more variables collected at the same point in time,
such as the census of population conducted by the Census Bureau every 10 years (the lat-
est being in year 2000), the surveys of consumer expenditures conducted by the University
of Michigan, and, of course, the opinion polls by Gallup and umpteen other organizations.
A concrete example of cross-sectional data is given in Table 1.1. This table gives data on
egg production and egg prices for the 50 states in the union for 1990 and 1991. For each

10For an informative account, see Michael D. Intriligator, Econometric Models, Techniques, and
Applications, Prentice Hall, Englewood Cliffs, N.J., 1978, chap. 3.
11To see this more clearly, we divided the data into four time periods: 1951:01 to 1962:12; 1963:01
to 1974:12; 1975:01 to 1986:12, and 1987:01 to 1999:09: For these subperiods the mean values of
the money supply (with corresponding standard deviations in parentheses) were, respectively, 165.88
(23.27), 323.20 (72.66), 788.12 (195.43), and 1099 (27.84), all figures in billions of dollars. This is a
rough indication of the fact that the money supply over the entire period was not stationary.
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Chapter 1 The Nature of Regression Analysis 23

year the data on the 50 states are cross-sectional data. Thus, in Table 1.1 we have two cross-
sectional samples.

Just as time series data create their own special problems (because of the stationarity
issue), cross-sectional data too have their own problems, specifically the problem of hetero-
geneity. From the data given in Table 1.1 we see that we have some states that produce huge
amounts of eggs (e.g., Pennsylvania) and some that produce very little (e.g., Alaska). When
we include such heterogeneous units in a statistical analysis, the size or scale effect must be
taken into account so as not to mix apples with oranges. To see this clearly, we plot in Fig-
ure 1.6 the data on eggs produced and their prices in 50 states for the year 1990. This figure
shows how widely scattered the observations are. In Chapter 11 we will see how the scale
effect can be an important factor in assessing relationships among economic variables.

Pooled Data
In pooled, or combined, data are elements of both time series and cross-section data. The
data in Table 1.1 are an example of pooled data. For each year we have 50 cross-sectional
observations and for each state we have two time series observations on prices and output
of eggs, a total of 100 pooled (or combined) observations. Likewise, the data given in
Exercise 1.1 are pooled data in that the Consumer Price Index (CPI) for each country
for 1980–2005 is time series data, whereas the data on the CPI for the seven countries
for a single year are cross-sectional data. In the pooled data we have 182 observations—
26 annual observations for each of the seven countries.

Panel, Longitudinal, or Micropanel Data
This is a special type of pooled data in which the same cross-sectional unit (say, a family or
a firm) is surveyed over time. For example, the U.S. Department of Commerce carries out
a census of housing at periodic intervals. At each periodic survey the same household
(or the people living at the same address) is interviewed to find out if there has been any
change in the housing and financial conditions of that household since the last survey. By
interviewing the same household periodically, the panel data provide very useful informa-
tion on the dynamics of household behavior, as we shall see in Chapter 16.
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24 Part One Single-Equation Regression Models

TABLE 1.1 U.S. Egg Production

State Y1 Y2 X1 X2 State Y1 Y2 X1 X2

AL 2,206 2,186 92.7 91.4 MT 172 164 68.0 66.0
AK 0.7 0.7 151.0 149.0 NE 1,202 1,400 50.3 48.9
AZ 73 74 61.0 56.0 NV 2.2 1.8 53.9 52.7
AR 3,620 3,737 86.3 91.8 NH 43 49 109.0 104.0
CA 7,472 7,444 63.4 58.4 NJ 442 491 85.0 83.0
CO 788 873 77.8 73.0 NM 283 302 74.0 70.0
CT 1,029 948 106.0 104.0 NY 975 987 68.1 64.0
DE 168 164 117.0 113.0 NC 3,033 3,045 82.8 78.7
FL 2,586 2,537 62.0 57.2 ND 51 45 55.2 48.0
GA 4,302 4,301 80.6 80.8 OH 4,667 4,637 59.1 54.7
HI 227.5 224.5 85.0 85.5 OK 869 830 101.0 100.0
ID 187 203 79.1 72.9 OR 652 686 77.0 74.6
IL 793 809 65.0 70.5 PA 4,976 5,130 61.0 52.0
IN 5,445 5,290 62.7 60.1 RI 53 50 102.0 99.0
IA 2,151 2,247 56.5 53.0 SC 1,422 1,420 70.1 65.9
KS 404 389 54.5 47.8 SD 435 602 48.0 45.8
KY 412 483 67.7 73.5 TN 277 279 71.0 80.7
LA 273 254 115.0 115.0 TX 3,317 3,356 76.7 72.6
ME 1,069 1,070 101.0 97.0 UT 456 486 64.0 59.0
MD 885 898 76.6 75.4 VT 31 30 106.0 102.0
MA 235 237 105.0 102.0 VA 943 988 86.3 81.2
MI 1,406 1,396 58.0 53.8 WA 1,287 1,313 74.1 71.5
MN 2,499 2,697 57.7 54.0 WV 136 174 104.0 109.0
MS 1,434 1,468 87.8 86.7 WI 910 873 60.1 54.0
MO 1,580 1,622 55.4 51.5 WY 1.7 1.7 83.0 83.0

Note: Y1 = eggs produced in 1990 (millions).
Y2 = eggs produced in 1991 (millions).
X1 = price per dozen (cents) in 1990.
X2 = price per dozen (cents) in 1991.

Source: World Almanac, 1993, p. 119. The data are from the Economic Research Service, U.S. Department of Agriculture.
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Chapter 1 The Nature of Regression Analysis 25

As a concrete example, consider the data given in Table 1.2. The data in the table, orig-
inally collected by Y. Grunfeld, refer to the real investment, the real value of the firm, and
the real capital stock of four U.S. companies, namely, General Electric (GM), U.S. Steel
(US), General Motors (GM), and Westinghouse (WEST), for the period 1935–1954.12

Since the data are for several companies collected over a number of years, this is a classic
example of panel data. In this table, the number of observations for each company is the
same, but this is not always the case. If all the companies have the same number of obser-
vations, we have what is called a balanced panel. If the number of observations is not the
same for each company, it is called an unbalanced panel. In Chapter 16, Panel Data
Regression Models, we will examine such data and show how to estimate such models.

Grunfeld’s purpose in collecting these data was to find out how real gross investment (I)
depends on the real value of the firm (F) a year earlier and real capital stock (C) a year
earlier. Since the companies included in the sample operate in the same capital market, by
studying them together, Grunfeld wanted to find out if they had similar investment functions.

The Sources of Data13

The data used in empirical analysis may be collected by a governmental agency (e.g., the
Department of Commerce), an international agency (e.g., the International Monetary Fund
[IMF] or the World Bank), a private organization (e.g., the Standard & Poor’s Corporation), or
an individual. Literally, there are thousands of such agencies collecting data for one purpose
or another.

The Internet
The Internet has literally revolutionized data gathering. If you just “surf the net” with a
keyword (e.g., exchange rates), you will be swamped with all kinds of data sources. In
Appendix E we provide some of the frequently visited websites that provide economic and
financial data of all sorts. Most of the data can be downloaded without much cost. You may
want to bookmark the various websites that might provide you with useful economic data.

The data collected by various agencies may be experimental or nonexperimental.
In experimental data, often collected in the natural sciences, the investigator may want to
collect data while holding certain factors constant in order to assess the impact of some
factors on a given phenomenon. For instance, in assessing the impact of obesity on blood
pressure, the researcher would want to collect data while holding constant the eating,
smoking, and drinking habits of the people in order to minimize the influence of these
variables on blood pressure.

In the social sciences, the data that one generally encounters are nonexperimental in
nature, that is, not subject to the control of the researcher.14 For example, the data on GNP,
unemployment, stock prices, etc., are not directly under the control of the investigator. As we
shall see, this lack of control often creates special problems for the researcher in pinning
down the exact cause or causes affecting a particular situation. For example, is it the money
supply that determines the (nominal) GDP or is it the other way around?

12Y. Grunfeld, “The Determinants of Corporate Investment,” unpublished PhD thesis, Department of
Economics, University of Chicago, 1958. These data have become a workhorse for illustrating panel
data regression models.
13For an illuminating account, see Albert T. Somers, The U.S. Economy Demystified: What the Major
Economic Statistics Mean and their Significance for Business, D.C. Heath, Lexington, Mass., 1985.
14In the social sciences too sometimes one can have a controlled experiment. An example is given in
Exercise 1.6.
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26 Part One Single-Equation Regression Models

1935 209.9 1362.4 53.8
1936 355.3 1807.1 50.5
1937 469.9 2673.3 118.1
1938 262.3 1801.9 260.2
1939 230.4 1957.3 312.7
1940 361.6 2202.9 254.2
1941 472.8 2380.5 261.4
1942 445.6 2168.6 298.7
1943 361.6 1985.1 301.8
1944 288.2 1813.9 279.1
1945 258.7 1850.2 213.8
1946 420.3 2067.7 232.6
1947 420.5 1796.7 264.8
1948 494.5 1625.8 306.9
1949 405.1 1667.0 351.1
1950 418.8 1677.4 357.8
1951 588.2 2289.5 341.1
1952 645.2 2159.4 444.2
1953 641.0 2031.3 623.6
1954 459.3 2115.5 669.7

WEST

1935 12.93 191.5 1.8
1936 25.90 516.0 0.8
1937 35.05 729.0 7.4
1938 22.89 560.4 18.1
1939 18.84 519.9 23.5
1940 28.57 628.5 26.5
1941 48.51 537.1 36.2
1942 43.34 561.2 60.8
1943 37.02 617.2 84.4
1944 37.81 626.7 91.2
1945 39.27 737.2 92.4
1946 53.46 760.5 86.0
1947 55.56 581.4 111.1
1948 49.56 662.3 130.6
1949 32.04 583.8 141.8
1950 32.24 635.2 136.7
1951 54.38 732.8 129.7
1952 71.78 864.1 145.5
1953 90.08 1193.5 174.8
1954 68.60 1188.9 213.5

TABLE 1.2 Investment Data for Four Companies, 1935–1954

Observation I F−1 C−1 Observation I F−1 C−1

GE US

1935 33.1 1170.6 97.8
1936 45.0 2015.8 104.4
1937 77.2 2803.3 118.0
1938 44.6 2039.7 156.2
1939 48.1 2256.2 172.6
1940 74.4 2132.2 186.6
1941 113.0 1834.1 220.9
1942 91.9 1588.0 287.8
1943 61.3 1749.4 319.9
1944 56.8 1687.2 321.3
1945 93.6 2007.7 319.6
1946 159.9 2208.3 346.0
1947 147.2 1656.7 456.4
1948 146.3 1604.4 543.4
1949 98.3 1431.8 618.3
1950 93.5 1610.5 647.4
1951 135.2 1819.4 671.3
1952 157.3 2079.7 726.1
1953 179.5 2371.6 800.3
1954 189.6 2759.9 888.9

GM

1935 317.6 3078.5 2.8
1936 391.8 4661.7 52.6
1937 410.6 5387.1 156.9
1938 257.7 2792.2 209.2
1939 330.8 4313.2 203.4
1940 461.2 4643.9 207.2
1941 512.0 4551.2 255.2
1942 448.0 3244.1 303.7
1943 499.6 4053.7 264.1
1944 547.5 4379.3 201.6
1945 561.2 4840.9 265.0
1946 688.1 4900.0 402.2
1947 568.9 3526.5 761.5
1948 529.2 3245.7 922.4
1949 555.1 3700.2 1020.1
1950 642.9 3755.6 1099.0
1951 755.9 4833.0 1207.7
1952 891.2 4924.9 1430.5
1953 1304.4 6241.7 1777.3
1954 1486.7 5593.6 2226.3

Notes: Y = I = gross investment = additions to plant and equipment plus maintenance and repairs, in millions of dollars deflated by P1.
X2 = F = value of the firm = price of common and preferred shares at Dec. 31 (or average price of Dec. 31 and Jan. 31 of the following year) times

number of common and preferred shares outstanding plus total book value of debt at Dec. 31, in millions of dollars deflated by P2.
X3 = C = stock of plant and equipment = accumulated sum of net additions to plant and equipment deflated by P1 minus depreciation allowance

deflated by P3 in these definitions.
P1 = implicit price deflator of producers’ durable equipment (1947 = 100).
P2 = implicit price deflator of GNP (1947 = 100).
P3 = depreciation expense deflator = 10-year moving average of wholesale price index of metals and metal products (1947 = 100).

Source: Reproduced from H. D. Vinod and Aman Ullah, Recent Advances in Regression Methods, Marcel Dekker, New York, 1981, pp. 259–261.
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The Accuracy of Data15

Although plenty of data are available for economic research, the quality of the data is often
not that good. There are several reasons for that.

1. As noted, most social science data are nonexperimental in nature. Therefore, there is the
possibility of observational errors, either of omission or commission.

2. Even in experimentally collected data, errors of measurement arise from approxima-
tions and roundoffs.

3. In questionnaire-type surveys, the problem of nonresponse can be serious; a researcher
is lucky to get a 40 percent response rate to a questionnaire. Analysis based on such a
partial response rate may not truly reflect the behavior of the 60 percent who did not re-
spond, thereby leading to what is known as (sample) selectivity bias. Then there is the
further problem that those who do respond to the questionnaire may not answer all the
questions, especially questions of a financially sensitive nature, thus leading to additional
selectivity bias.

4. The sampling methods used in obtaining the data may vary so widely that it is often dif-
ficult to compare the results obtained from the various samples.

5. Economic data are generally available at a highly aggregate level. For example, most
macrodata (e.g., GNP, employment, inflation, unemployment) are available for the econ-
omy as a whole or at the most for some broad geographical regions. Such highly aggre-
gated data may not tell us much about the individuals or microunits that may be the
ultimate object of study.

6. Because of confidentiality, certain data can be published only in highly aggregate form.
The IRS, for example, is not allowed by law to disclose data on individual tax returns;
it can only release some broad summary data. Therefore, if one wants to find out how
much individuals with a certain level of income spent on health care, one cannot do so
except at a very highly aggregate level. Such macroanalysis often fails to reveal the dy-
namics of the behavior of the microunits. Similarly, the Department of Commerce,
which conducts the census of business every 5 years, is not allowed to disclose infor-
mation on production, employment, energy consumption, research and development
expenditure, etc., at the firm level. It is therefore difficult to study the interfirm differences
on these items.

Because of all of these and many other problems, the researcher should always keep
in mind that the results of research are only as good as the quality of the data. There-
fore, if in given situations researchers find that the results of the research are “unsatisfac-
tory,” the cause may be not that they used the wrong model but that the quality of the data
was poor. Unfortunately, because of the nonexperimental nature of the data used in most
social science studies, researchers very often have no choice but to depend on the available
data. But they should always keep in mind that the data used may not be the best and should
try not to be too dogmatic about the results obtained from a given study, especially when
the quality of the data is suspect.

A Note on the Measurement Scales of Variables16

The variables that we will generally encounter fall into four broad categories: ratio scale,
interval scale, ordinal scale, and nominal scale. It is important that we understand each.

15For a critical review, see O. Morgenstern, The Accuracy of Economic Observations, 2d ed., Princeton
University Press, Princeton, N.J., 1963.
16The following discussion relies heavily on Aris Spanos, Probability Theory and Statistical Inference:
Econometric Modeling with Observational Data, Cambridge University Press, New York, 1999, p. 24.
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Ratio Scale
For a variable X, taking two values, X1 and X2, the ratio X1�X2 and the distance (X2 − X1)
are meaningful quantities. Also, there is a natural ordering (ascending or descending) of the
values along the scale. Therefore, comparisons such as X2 ≤ X1 or X2 ≥ X1 are meaning-
ful. Most economic variables  belong to this category. Thus, it is meaningful to ask how big
this year’s GDP is compared with the previous year’s GDP. Personal income, measured
in dollars, is a ratio variable; someone earning $100,000 is making twice as much as an-
other person earning $50,000 (before taxes are assessed, of course!).

Interval Scale
An interval scale variable satisfies the last two properties of the ratio scale variable but not
the first. Thus, the distance between two time periods, say (2000–1995) is meaningful, but
not the ratio of two time periods (2000/1995). At 11:00 a.m. PST on August 11, 2007,
Portland, Oregon, reported a temperature of 60 degrees Fahrenheit while Tallahassee,
Florida, reached 90 degrees. Temperature is not measured on a ratio scale since it does not
make sense to claim that Tallahassee was 50 percent warmer than Portland. This is mainly
due to the fact that the Fahrenheit scale does not use 0 degrees as a natural base.

Ordinal Scale
A variable belongs to this category only if it satisfies the third property of the ratio scale
(i.e., natural ordering). Examples are grading systems (A, B, C grades) or income class
(upper, middle, lower). For these variables the ordering exists but the distances between the
categories cannot be quantified. Students of economics will recall the indifference curves
between two goods. Each higher indifference curve indicates a higher level of utility, but
one cannot quantify by how much one indifference curve is higher than the others.

Nominal Scale
Variables in this category have none of the features of the ratio scale variables. Variables
such as gender (male, female) and marital status (married, unmarried, divorced, separated)
simply denote categories. Question: What is the reason why such variables cannot be
expressed on the ratio, interval, or ordinal scales?

As we shall see, econometric techniques that may be suitable for ratio scale variables
may not be suitable for nominal scale variables. Therefore, it is important to bear in mind
the distinctions among the four types of measurement scales discussed above.

Summary and
Conclusions

1. The key idea behind regression analysis is the statistical dependence of one variable, the
dependent variable, on one or more other variables, the explanatory variables.

2. The objective of such analysis is to estimate and/or predict the mean or average value of the
dependent variable on the basis of the known or fixed values of the explanatory variables.

3. In practice the success of regression analysis depends on the availability of the appro-
priate data. This chapter discussed the nature, sources, and limitations of the data that
are generally available for research, especially in the social sciences.

4. In any research, the researcher should clearly state the sources of the data used in
the analysis, their definitions, their methods of collection, and any gaps or omissions
in the data as well as any revisions in the data. Keep in mind that the macroeconomic
data published by the government are often revised.

5. Since the reader may not have the time, energy, or resources to track down the data, the
reader has the right to presume that the data used by the researcher have been properly
gathered and that the computations and analysis are correct.
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EXERCISES

Year U.S. Canada Japan France Germany Italy U.K.

1980 82.4 76.1 91.0 72.2 86.7 63.9 78.5
1981 90.9 85.6 95.3 81.8 92.2 75.5 87.9
1982 96.5 94.9 98.1 91.7 97.0 87.8 95.4
1983 99.6 100.4 99.8 100.3 100.3 100.8 99.8
1984 103.9 104.7 102.1 108.0 102.7 111.4 104.8
1985 107.6 109.0 104.2 114.3 104.8 121.7 111.1
1986 109.6 113.5 104.9 117.2 104.6 128.9 114.9
1987 113.6 118.4 104.9 121.1 104.9 135.1 119.7
1988 118.3 123.2 105.6 124.3 106.3 141.9 125.6
1989 124.0 129.3 108.0 128.7 109.2 150.7 135.4
1990 130.7 135.5 111.4 132.9 112.2 160.4 148.2
1991 136.2 143.1 115.0 137.2 116.3 170.5 156.9
1992 140.3 145.3 117.0 140.4 122.2 179.5 162.7
1993 144.5 147.9 118.5 143.4 127.6 187.7 165.3
1994 148.2 148.2 119.3 145.8 131.1 195.3 169.3
1995 152.4 151.4 119.2 148.4 133.3 205.6 175.2
1996 156.9 153.8 119.3 151.4 135.3 213.8 179.4
1997 160.5 156.3 121.5 153.2 137.8 218.2 185.1
1998 163.0 157.8 122.2 154.2 139.1 222.5 191.4
1999 166.6 160.5 121.8 155.0 140.0 226.2 194.3
2000 172.2 164.9 121.0 157.6 142.0 231.9 200.1
2001 177.1 169.1 120.1 160.2 144.8 238.3 203.6
2002 179.9 172.9 119.0 163.3 146.7 244.3 207.0
2003 184.0 177.7 118.7 166.7 148.3 250.8 213.0
2004 188.9 181.0 118.7 170.3 150.8 256.3 219.4
2005 195.3 184.9 118.3 173.2 153.7 261.3 225.6

17Subtract from the current year’s CPI the CPI from the previous year, divide the difference by the
previous year’s CPI, and multiply the result by 100. Thus, the inflation rate for Canada for 1981 is
[(85.6 − 76.1)/76.1] × 100 = 12.48% (approx.).

TABLE 1.3
CPI in Seven
Industrial Countries,
1980–2005
(1982–1984 = 100)

Source: Economic Report of the
President, 2007, Table 108,
p. 354.

1.1. Table 1.3 gives data on the Consumer Price Index (CPI) for seven industrialized
countries with 1982–1984 = 100 as the base of the index.

a. From the given data, compute the inflation rate for each country.17

b. Plot the inflation rate for each country against time (i.e., use the horizontal axis for
time and the vertical axis for the inflation rate).

c. What broad conclusions can you draw about the inflation experience in the seven
countries?

d. Which country’s inflation rate seems to be most variable? Can you offer any
explanation?

1.2. a. Using Table 1.3, plot the inflation rate of Canada, France, Germany, Italy, Japan,
and the United Kingdom against the United States inflation rate.

b. Comment generally about the behavior of the inflation rate in the six countries 
vis-à-vis the U.S. inflation rate.

c. If you find that the six countries’ inflation rates move in the same direction as the
U.S. inflation rate, would that suggest that U.S. inflation “causes” inflation in the
other countries? Why or why not?
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1.3. Table 1.4 gives the foreign exchange rates for nine industrialized countries for the
years 1985–2006. Except for the United Kingdom, the exchange rate is defined as
the units of foreign currency for one U.S. dollar; for the United Kingdom, it is defined
as the number of U.S. dollars for one U.K. pound.

a. Plot these exchange rates against time and comment on the general behavior of the
exchange rates over the given time period.

b. The dollar is said to appreciate if it can buy more units of a foreign currency.
Contrarily, it is said to depreciate if it buys fewer units of a foreign currency. Over
the time period 1985–2006, what has been the general behavior of the U.S. dollar?
Incidentally, look up any textbook on macroeconomics or international economics
to find out what factors determine the appreciation or depreciation of a currency.

1.4. The data behind the M1 money supply in Figure 1.5 are given in Table 1.5. Can you
give reasons why the money supply has been increasing over the time period shown in
the table?

1.5. Suppose you were to develop an economic model of criminal activities, say, the hours
spent in criminal activities (e.g., selling illegal drugs). What variables would you con-
sider in developing such a model? See if your model matches the one developed by the
Nobel laureate economist Gary Becker.18

TABLE 1.4 Exchange Rates for Nine Countries: 1985–2006

South United
Year Australia Canada China P. R. Japan Mexico Korea Sweden Switzerland Kingdom

1985 0.7003 1.3659 2.9434 238.47 0.257 872.45 8.6032 2.4552 1.2974
1986 0.6709 1.3896 3.4616 168.35 0.612 884.60 7.1273 1.7979 1.4677
1987 0.7014 1.3259 3.7314 144.60 1.378 826.16 6.3469 1.4918 1.6398
1988 0.7841 1.2306 3.7314 128.17 2.273 734.52 6.1370 1.4643 1.7813
1989 0.7919 1.1842 3.7673 138.07 2.461 674.13 6.4559 1.6369 1.6382
1990 0.7807 1.1668 4.7921 145.00 2.813 710.64 5.9231 1.3901 1.7841
1991 0.7787 1.1460 5.3337 134.59 3.018 736.73 6.0521 1.4356 1.7674
1992 0.7352 1.2085 5.5206 126.78 3.095 784.66 5.8258 1.4064 1.7663
1993 0.6799 1.2902 5.7795 111.08 3.116 805.75 7.7956 1.4781 1.5016
1994 0.7316 1.3664 8.6397 102.18 3.385 806.93 7.7161 1.3667 1.5319
1995 0.7407 1.3725 8.3700 93.96 6.447 772.69 7.1406 1.1812 1.5785
1996 0.7828 1.3638 8.3389 108.78 7.600 805.00 6.7082 1.2361 1.5607
1997 0.7437 1.3849 8.3193 121.06 7.918 953.19 7.6446 1.4514 1.6376
1998 0.6291 1.4836 8.3008 130.99 9.152 1,400.40 7.9522 1.4506 1.6573
1999 0.6454 1.4858 8.2783 113.73 9.553 1,189.84 8.2740 1.5045 1.6172
2000 0.5815 1.4855 8.2784 107.80 9.459 1,130.90 9.1735 1.6904 1.5156
2001 0.5169 1.5487 8.2770 121.57 9.337 1,292.02 10.3425 1.6891 1.4396
2002 0.5437 1.5704 8.2771 125.22 9.663 1,250.31 9.7233 1.5567 1.5025
2003 0.6524 1.4008 8.2772 115.94 10.793 1,192.08 8.0787 1.3450 1.6347
2004 0.7365 1.3017 8.2768 108.15 11.290 1,145.24 7.3480 1.2428 1.8330
2005 0.7627 1.2115 8.1936 110.11 10.894 1,023.75 7.4710 1.2459 1.8204
2006 0.7535 1.1340 7.9723 116.31 10.906 954.32 7.3718 1.2532 1.8434

Source: Economic Report of the President, 2007, Table B–110, p. 356.

18G. S. Becker, “Crime and Punishment: An Economic Approach,” Journal of Political Economy, vol. 76,
1968, pp. 169–217.
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1959:01 138.8900 139.3900 139.7400 139.6900 140.6800 141.1700
1959:07 141.7000 141.9000 141.0100 140.4700 140.3800 139.9500
1960:01 139.9800 139.8700 139.7500 139.5600 139.6100 139.5800
1960:07 140.1800 141.3100 141.1800 140.9200 140.8600 140.6900
1961:01 141.0600 141.6000 141.8700 142.1300 142.6600 142.8800
1961:07 142.9200 143.4900 143.7800 144.1400 144.7600 145.2000
1962:01 145.2400 145.6600 145.9600 146.4000 146.8400 146.5800
1962:07 146.4600 146.5700 146.3000 146.7100 147.2900 147.8200
1963:01 148.2600 148.9000 149.1700 149.7000 150.3900 150.4300
1963:07 151.3400 151.7800 151.9800 152.5500 153.6500 153.2900
1964:01 153.7400 154.3100 154.4800 154.7700 155.3300 155.6200
1964:07 156.8000 157.8200 158.7500 159.2400 159.9600 160.3000
1965:01 160.7100 160.9400 161.4700 162.0300 161.7000 162.1900
1965:07 163.0500 163.6800 164.8500 165.9700 166.7100 167.8500
1966:01 169.0800 169.6200 170.5100 171.8100 171.3300 171.5700
1966:07 170.3100 170.8100 171.9700 171.1600 171.3800 172.0300
1967:01 171.8600 172.9900 174.8100 174.1700 175.6800 177.0200
1967:07 178.1300 179.7100 180.6800 181.6400 182.3800 183.2600
1968:01 184.3300 184.7100 185.4700 186.6000 187.9900 189.4200
1968:07 190.4900 191.8400 192.7400 194.0200 196.0200 197.4100
1969:01 198.6900 199.3500 200.0200 200.7100 200.8100 201.2700
1969:07 201.6600 201.7300 202.1000 202.9000 203.5700 203.8800
1970:01 206.2200 205.0000 205.7500 206.7200 207.2200 207.5400
1970:07 207.9800 209.9300 211.8000 212.8800 213.6600 214.4100
1971:01 215.5400 217.4200 218.7700 220.0000 222.0200 223.4500
1971:07 224.8500 225.5800 226.4700 227.1600 227.7600 228.3200
1972:01 230.0900 232.3200 234.3000 235.5800 235.8900 236.6200
1972:07 238.7900 240.9300 243.1800 245.0200 246.4100 249.2500
1973:01 251.4700 252.1500 251.6700 252.7400 254.8900 256.6900
1973:07 257.5400 257.7600 257.8600 259.0400 260.9800 262.8800
1974:01 263.7600 265.3100 266.6800 267.2000 267.5600 268.4400
1974:07 269.2700 270.1200 271.0500 272.3500 273.7100 274.2000
1975:01 273.9000 275.0000 276.4200 276.1700 279.2000 282.4300
1975:07 283.6800 284.1500 285.6900 285.3900 286.8300 287.0700
1976:01 288.4200 290.7600 292.7000 294.6600 295.9300 296.1600
1976:07 297.2000 299.0500 299.6700 302.0400 303.5900 306.2500
1977:01 308.2600 311.5400 313.9400 316.0200 317.1900 318.7100
1977:07 320.1900 322.2700 324.4800 326.4000 328.6400 330.8700
1978:01 334.4000 335.3000 336.9600 339.9200 344.8600 346.8000
1978:07 347.6300 349.6600 352.2600 353.3500 355.4100 357.2800
1979:01 358.6000 359.9100 362.4500 368.0500 369.5900 373.3400
1979:07 377.2100 378.8200 379.2800 380.8700 380.8100 381.7700
1980:01 385.8500 389.7000 388.1300 383.4400 384.6000 389.4600
1980:07 394.9100 400.0600 405.3600 409.0600 410.3700 408.0600
1981:01 410.8300 414.3800 418.6900 427.0600 424.4300 425.5000
1981:07 427.9000 427.8500 427.4600 428.4500 430.8800 436.1700
1982:01 442.1300 441.4900 442.3700 446.7800 446.5300 447.8900
1982:07 449.0900 452.4900 457.5000 464.5700 471.1200 474.3000
1983:01 476.6800 483.8500 490.1800 492.7700 499.7800 504.3500
1983:07 508.9600 511.6000 513.4100 517.2100 518.5300 520.7900
1984:01 524.4000 526.9900 530.7800 534.0300 536.5900 540.5400
1984:07 542.1300 542.3900 543.8600 543.8700 547.3200 551.1900

TABLE 1.5
Seasonally Adjusted
M1 Supply:
1959:01–1999:07
(billions of dollars)

Source: Board of Governors,
Federal Reserve Bank, USA.

(Continued)
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1985:01 555.6600 562.4800 565.7400 569.5500 575.0700 583.1700
1985:07 590.8200 598.0600 604.4700 607.9100 611.8300 619.3600
1986:01 620.4000 624.1400 632.8100 640.3500 652.0100 661.5200
1986:07 672.2000 680.7700 688.5100 695.2600 705.2400 724.2800
1987:01 729.3400 729.8400 733.0100 743.3900 746.0000 743.7200
1987:07 744.9600 746.9600 748.6600 756.5000 752.8300 749.6800
1988:01 755.5500 757.0700 761.1800 767.5700 771.6800 779.1000
1988:07 783.4000 785.0800 784.8200 783.6300 784.4600 786.2600
1989:01 784.9200 783.4000 782.7400 778.8200 774.7900 774.2200
1989:07 779.7100 781.1400 782.2000 787.0500 787.9500 792.5700
1990:01 794.9300 797.6500 801.2500 806.2400 804.3600 810.3300
1990:07 811.8000 817.8500 821.8300 820.3000 822.0600 824.5600
1991:01 826.7300 832.4000 838.6200 842.7300 848.9600 858.3300
1991:07 862.9500 868.6500 871.5600 878.4000 887.9500 896.7000
1992:01 910.4900 925.1300 936.0000 943.8900 950.7800 954.7100
1992:07 964.6000 975.7100 988.8400 1004.340 1016.040 1024.450
1993:01 1030.900 1033.150 1037.990 1047.470 1066.220 1075.610
1993:07 1085.880 1095.560 1105.430 1113.800 1123.900 1129.310
1994:01 1132.200 1136.130 1139.910 1141.420 1142.850 1145.650
1994:07 1151.490 1151.390 1152.440 1150.410 1150.440 1149.750
1995:01 1150.640 1146.740 1146.520 1149.480 1144.650 1144.240
1995:07 1146.500 1146.100 1142.270 1136.430 1133.550 1126.730
1996:01 1122.580 1117.530 1122.590 1124.520 1116.300 1115.470
1996:07 1112.340 1102.180 1095.610 1082.560 1080.490 1081.340
1997:01 1080.520 1076.200 1072.420 1067.450 1063.370 1065.990
1997:07 1067.570 1072.080 1064.820 1062.060 1067.530 1074.870
1998:01 1073.810 1076.020 1080.650 1082.090 1078.170 1077.780
1998:07 1075.370 1072.210 1074.650 1080.400 1088.960 1093.350
1999:01 1091.000 1092.650 1102.010 1108.400 1104.750 1101.110
1999:07 1099.530 1102.400 1093.460

TABLE 1.5
(Continued)

1.6. Controlled experiments in economics: On April 7, 2000, President Clinton signed into
law a bill passed by both Houses of the U.S. Congress that lifted earnings limitations
on Social Security recipients. Until then, recipients between the ages of 65 and 69 who
earned more than $17,000 a year would lose $1 worth of Social Security benefit for
every $3 of income earned in excess of $17,000. How would you devise a study to
assess the impact of this change in the law? Note: There was no income limitation for
recipients over the age of 70 under the old law.

1.7. The data presented in Table 1.6 were published in the March 1, 1984, issue of The Wall
Street Journal. They relate to the advertising budget (in millions of dollars) of 21 firms
for 1983 and millions of impressions retained per week by the viewers of the products
of these firms. The data are based on a survey of 4000 adults in which users of the
products were asked to cite a commercial they had seen for the product category in the
past week.

a. Plot impressions on the vertical axis and advertising expenditure on the horizontal
axis.

b. What can you say about the nature of the relationship between the two variables?

c. Looking at your graph, do you think it pays to advertise? Think about all those
commercials shown on Super Bowl Sunday or during the World Series.

Note: We will explore further the data given in Table 1.6 in subsequent chapters.
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Impressions, Expenditure,
Firm millions millions of 1983 dollars

1. Miller Lite 32.1 50.1

2. Pepsi 99.6 74.1

3. Stroh’s 11.7 19.3

4. Fed’l Express 21.9 22.9

5. Burger King 60.8 82.4

6. Coca-Cola 78.6 40.1

7. McDonald’s 92.4 185.9

8. MCl 50.7 26.9

9. Diet Cola 21.4 20.4

10. Ford 40.1 166.2

11. Levi’s 40.8 27.0

12. Bud Lite 10.4 45.6

13. ATT/Bell 88.9 154.9

14. Calvin Klein 12.0 5.0

15. Wendy’s 29.2 49.7

16. Polaroid 38.0 26.9

17. Shasta 10.0 5.7

18. Meow Mix 12.3 7.6

19. Oscar Meyer 23.4 9.2

20. Crest 71.1 32.4

21. Kibbles ‘N Bits 4.4 6.1

TABLE 1.6
Impact of Advertising
Expenditure

Source: http://lib.stat.cmu.edu/
DASL/Datafiles/tvadsdat.html.
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In Chapter 1 we discussed the concept of regression in broad terms. In this chapter we
approach the subject somewhat formally. Specifically, this and the following three chapters
introduce the reader to the theory underlying the simplest possible regression analysis,
namely, the bivariate, or two-variable, regression in which the dependent variable (the
regressand) is related to a single explanatory variable (the regressor). This case is consid-
ered first, not because of its practical adequacy, but because it presents the fundamental
ideas of regression analysis as simply as possible and some of these ideas can be illustrated
with the aid of two-dimensional graphs. Moreover, as we shall see, the more general
multiple regression analysis in which the regressand is related to one or more regressors is
in many ways a logical extension of the two-variable case.

2.1 A Hypothetical Example1

As noted in Section 1.2, regression analysis is largely concerned with estimating and/or
predicting the (population) mean value of the dependent variable on the basis of the
known or fixed values of the explanatory variable(s).2 To understand this, consider the data
given in Table 2.1. The data in the table refer to a total population of 60 families in a
hypothetical community and their weekly income (X) and weekly consumption expenditure
(Y ), both in dollars. The 60 families are divided into 10 income groups (from $80 to $260)
and the weekly expenditures of each family in the various groups are as shown in the table.
Therefore, we have 10 fixed values of X and the corresponding Y values against each of the
X values; so to speak, there are 10 Y subpopulations.

There is considerable variation in weekly consumption expenditure in each income
group, which can be seen clearly from Figure 2.1. But the general picture that one gets is

Chapter

1The reader whose statistical knowledge has become somewhat rusty may want to freshen it up by
reading the statistical appendix, Appendix A, before reading this chapter.
2The expected value, or expectation, or population mean of a random variable Y is denoted by the
symbol E(Y). On the other hand, the mean value computed from a sample of values from the Y
population is denoted as Y

–
, read as Y bar.

2
Two-Variable
Regression Analysis:
Some Basic Ideas
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that, despite the variability of weekly consumption expenditure within each income
bracket, on the average, weekly consumption expenditure increases as income increases.
To see this clearly, in Table 2.1 we have given the mean, or average, weekly consumption
expenditure corresponding to each of the 10 levels of income. Thus, corresponding to the
weekly income level of $80, the mean consumption expenditure is $65, while correspond-
ing to the income level of $200, it is $137. In all we have 10 mean values for the 10 sub-
populations of Y. We call these mean values conditional expected values, as they depend
on the given values of the (conditioning) variable X. Symbolically, we denote them as
E(Y | X), which is read as the expected value of Y given the value of X (see also Table 2.2).

It is important to distinguish these conditional expected values from the unconditional
expected value of weekly consumption expenditure, E(Y ). If we add the weekly consump-
tion expenditures for all the 60 families in the population and divide this number by 60, we
get the number $121.20 ($7272/60), which is the unconditional mean, or expected, value
of weekly consumption expenditure, E(Y); it is unconditional in the sense that in arriving
at this number we have disregarded the income levels of the various families.3 Obviously,

TABLE 2.1
Weekly Family
Income X, $

X→
Y↓ 80 100 120 140 160 180 200 220 240 260

Weekly family 55 65 79 80 102 110 120 135 137 150
consumption 60 70 84 93 107 115 136 137 145 152
expenditure Y, $ 65 74 90 95 110 120 140 140 155 175

70 80 94 103 116 130 144 152 165 178
75 85 98 108 118 135 145 157 175 180
– 88 – 113 125 140 – 160 189 185
– – – 115 – – – 162 – 191

Total 325 462 445 707 678 750 685 1043 966 1211

Conditional 65 77 89 101 113 125 137 149 161 173
means of Y, 
E(Y |X )
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50

E(Y |X)

FIGURE 2.1
Conditional
distribution of
expenditure for various
levels of income
(data of Table 2.1).

3As shown in Appendix A, in general the conditional and unconditional mean values are different.
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36 Part One Single-Equation Regression Models

the various conditional expected values of Y given in Table 2.1 are different from the
unconditional expected value of Y of $121.20. When we ask the question, “What is the
expected value of weekly consumption expenditure of a family?” we get the answer $121.20
(the unconditional mean). But if we ask the question, “What is the expected value
of weekly consumption expenditure of a family whose monthly income is, say, $140?” we
get the answer $101 (the conditional mean). To put it differently, if we ask the question,
“What is the best (mean) prediction of weekly expenditure of families with a weekly
income of $140?” the answer would be $101. Thus the knowledge of the income level may
enable us to better predict the mean value of consumption expenditure than if we do not
have that knowledge.4 This probably is the essence of regression analysis, as we shall
discover throughout this text.

The dark circled points in Figure 2.1 show the conditional mean values of Y against the
various X values. If we join these conditional mean values, we obtain what is known as the
population regression line (PRL), or more generally, the population regression curve.5

More simply, it is the regression of Y on X. The adjective “population” comes from the fact
that we are dealing in this example with the entire population of 60 families. Of course, in
reality a population may have many families.

Geometrically, then, a population regression curve is simply the locus of the conditional
means of the dependent variable for the fixed values of the explanatory variable(s). More
simply, it is the curve connecting the means of the subpopulations of Y corresponding to the
given values of the regressor X. It can be depicted as in Figure 2.2.

This figure shows that for each X (i.e., income level) there is a population of Y values
(weekly consumption expenditures) that are spread around the (conditional) mean of those
Y values. For simplicity, we are assuming that these Y values are distributed symmetrically
around their respective (conditional) mean values. And the regression line (or curve) passes
through these (conditional) mean values.

With this background, the reader may find it instructive to reread the definition of
regression given in Section 1.2.

TABLE 2.2
Conditional
Probabilities p(Y | Xi)
for the Data of 
Table 2.1

X→
p(Y |Xi) 80 100 120 140 160 180 200 220 240 260

Conditional 1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

probabilities 1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7p(Y |Xi)

1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

– 1
6

– 1
7

1
6

1
6

– 1
7

1
6

1
7

– – – 1
7

– – – 1
7

– 1
7

Conditional 65 77 89 101 113 125 137 149 161 173
means of Y

4I am indebted to James Davidson on this perspective. See James Davidson, Econometric Theory,
Blackwell Publishers, Oxford, U.K., 2000, p. 11.
5In the present example the PRL is a straight line, but it could be a curve (see Figure 2.3).

↓
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 37

2.2 The Concept of Population Regression Function (PRF)

From the preceding discussion and Figures 2.1 and 2.2, it is clear that each conditional
mean E(Y | Xi ) is a function of Xi, where Xi is a given value of X. Symbolically,

E(Y | Xi ) = f (Xi ) (2.2.1)

where f (Xi ) denotes some function of the explanatory variable X. In our example,
E(Y | Xi ) is a linear function of Xi. Equation 2.2.1 is known as the conditional expectation
function (CEF) or population regression function (PRF) or population regression (PR)
for short. It states merely that the expected value of the distribution of Y given Xi is
functionally related to Xi. In simple terms, it tells how the mean or average response of Y
varies with X.

What form does the function f (Xi ) assume? This is an important question because in
real situations we do not have the entire population available for examination. The func-
tional form of the PRF is therefore an empirical question, although in specific cases theory
may have something to say. For example, an economist might posit that consumption
expenditure is linearly related to income. Therefore, as a first approximation or a working
hypothesis, we may assume that the PRF E(Y | Xi ) is a linear function of Xi, say, of the type

E(Y | Xi ) = β1 + β2 Xi (2.2.2)

where β1 and β2 are unknown but fixed parameters known as the regression coefficients; β1

and β2 are also known as intercept and slope coefficients, respectively. Equation 2.2.1 itself
is known as the linear population regression function. Some alternative expressions
used in the literature are linear population regression model or simply linear population
regression. In the sequel, the terms regression, regression equation, and regression model
will be used synonymously.
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FIGURE 2.2
Population regression
line (data of Table 2.1).
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38 Part One Single-Equation Regression Models

In regression analysis our interest is in estimating the PRFs like Equation 2.2.2, that is,
estimating the values of the unknowns β1 and β2 on the basis of observations on Y and X.
This topic will be studied in detail in Chapter 3.

2.3 The Meaning of the Term Linear

Since this text is concerned primarily with linear models like Eq. (2.2.2), it is essential to
know what the term linear really means, for it can be interpreted in two different ways.

Linearity in the Variables
The first and perhaps more “natural” meaning of linearity is that the conditional expecta-
tion of Y is a linear function of Xi, such as, for example, Eq. (2.2.2).6 Geometrically, the
regression curve in this case is a straight line. In this interpretation, a regression function
such as E(Y | Xi ) = β1 + β2 X2

i is not a linear function because the variable X appears with
a power or index of 2.

Linearity in the Parameters
The second interpretation of linearity is that the conditional expectation of Y, E(Y | Xi ),
is a linear function of the parameters, the β’s; it may or may not be linear in the variable
X.7 In this interpretation E(Y | Xi ) = β1 + β2 X2

i is a linear (in the parameter) re-
gression model. To see this, let us suppose X takes the value 3. Therefore,
E(Y | X = 3) = β1 + 9β2 , which is obviously linear in β1 and β2. All the models shown in
Figure 2.3 are thus linear regression models, that is, models linear in the parameters.

Now consider the model E(Y | Xi ) = β1 + β2
2 Xi . Now suppose X = 3; then we obtain

E(Y | Xi ) = β1 + 3β2
2 , which is nonlinear in the parameter β2. The preceding model is

an example of a nonlinear (in the parameter) regression model. We will discuss such
models in Chapter 14.

Of the two interpretations of linearity, linearity in the parameters is relevant for the
development of the regression theory to be presented shortly. Therefore, from now on, the
term “linear” regression will always mean a regression that is linear in the parameters;
the β’s (that is, the parameters) are raised to the first power only. It may or may not be linear
in the explanatory variables, the X’s. Schematically, we have Table 2.3. Thus, E(Y | Xi ) =
β1 + β2 Xi , which is linear both in the parameters and variable, is a LRM, and so is
E(Y | Xi ) = β1 + β2 X2

i , which is linear in the parameters but nonlinear in variable X.

6A function Y = f (X) is said to be linear in X if X appears with a power or index of 1 only (that is,
terms such as X2, 

√
X , and so on, are excluded) and is not multiplied or divided by any other variable

(for example, X · Z or X/Z, where Z is another variable). If Y depends on X alone, another way to
state that Y is linearly related to X is that the rate of change of Y with respect to X (i.e., the slope, or
derivative, of Y with respect to X, dY/dX) is independent of the value of X. Thus, if Y = 4X, dY/dX = 4,
which is independent of the value of X. But if Y = 4X2, dY/dX = 8X , which is not independent of
the value taken by X. Hence this function is not linear in X.
7A function is said to be linear in the parameter, say, β1, if β1 appears with a power of 1 only and is
not multiplied or divided by any other parameter (for example, β1β2, β2/β1, and so on).
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 39

2.4 Stochastic Specification of PRF

It is clear from Figure 2.1 that, as family income increases, family consumption expenditure
on the average increases, too. But what about the consumption expenditure of an individual
family in relation to its (fixed) level of income? It is obvious from Table 2.1 and Figure 2.1
that an individual family’s consumption expenditure does not necessarily increase as the
income level increases. For example, from Table 2.1 we observe that corresponding to the
income level of $100 there is one family whose consumption expenditure of $65 is less than
the consumption expenditures of two families whose weekly income is only $80. But notice
that the average consumption expenditure of families with a weekly income of $100 is
greater than the average consumption expenditure of families with a weekly income of
$80 ($77 versus $65).

What, then, can we say about the relationship between an individual family’s consump-
tion expenditure and a given level of income? We see from Figure 2.1 that, given the
income level of Xi , an individual family’s consumption expenditure is clustered around the

Quadratic

Y

X

+Y = X +β1 β2 X2β3

+Y = X +β1 β2 X2β3 + X3β4

Cubic

Y

X

Exponential

Y

X

+ Xβ1 β2Y = e

FIGURE 2.3
Linear-in-parameter
functions.

TABLE 2.3
Linear Regression
Models

Model Linear in Parameters? Model Linear in Variables?

Yes No

Yes LRM LRM
No NLRM NLRM

Note: LRM = linear regression model
NLRM = nonlinear regression model
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40 Part One Single-Equation Regression Models

average consumption of all families at that Xi , that is, around its conditional expectation.
Therefore, we can express the deviation of an individual Yi around its expected value as
follows:

ui = Yi − E(Y | Xi )

or

Yi = E(Y | Xi ) + ui (2.4.1)

where the deviation ui is an unobservable random variable taking positive or negative
values. Technically, ui is known as the stochastic disturbance or stochastic error term.

How do we interpret Equation 2.4.1? We can say that the expenditure of an individual
family, given its income level, can be expressed as the sum of two components:
(1) E(Y | Xi ), which is simply the mean consumption expenditure of all the families with
the same level of income. This component is known as the systematic, or deterministic,
component, and (2) ui , which is the random, or nonsystematic, component. We shall
examine shortly the nature of the stochastic disturbance term, but for the moment assume
that it is a surrogate or proxy for all the omitted or neglected variables that may affect Y but
are not (or cannot be) included in the regression model.

If E(Y | Xi ) is assumed to be linear in Xi , as in Eq. (2.2.2), Eq. (2.4.1) may be written as

Yi = E(Y | Xi ) + ui

= β1 + β2 Xi + ui (2.4.2)

Equation 2.4.2 posits that the consumption expenditure of a family is linearly related to its
income plus the disturbance term. Thus, the individual consumption expenditures, given
X = $80 (see Table 2.1), can be expressed as

Y1 = 55 = β1 + β2(80) + u1

Y2 = 60 = β1 + β2(80) + u2

Y3 = 65 = β1 + β2(80) + u3 (2.4.3)

Y4 = 70 = β1 + β2(80) + u4

Y5 = 75 = β1 + β2(80) + u5

Now if we take the expected value of Eq. (2.4.1) on both sides, we obtain

E(Yi | Xi ) = E[E(Y | Xi )] + E(ui | Xi )

= E(Y | Xi ) + E(ui | Xi ) (2.4.4)

where use is made of the fact that the expected value of a constant is that constant itself.8

Notice carefully that in Equation 2.4.4 we have taken the conditional expectation, condi-
tional upon the given X’s.

Since E(Yi | Xi ) is the same thing as E(Y | Xi ), Eq. (2.4.4) implies that

E(ui | Xi ) = 0 (2.4.5)

8See Appendix A for a brief discussion of the properties of the expectation operator E. Note that
E(Y |Xi), once the value of Xi is fixed, is a constant.
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 41

Thus, the assumption that the regression line passes through the conditional means of Y
(see Figure 2.2) implies that the conditional mean values of ui (conditional upon the given
X’s) are zero.

From the previous discussion, it is clear Eq. (2.2.2) and Eq. (2.4.2) are equivalent forms
if E(ui | Xi ) = 0.9 But the stochastic specification in Eq. (2.4.2) has the advantage that it
clearly shows that there are other variables besides income that affect consumption expen-
diture and that an individual family’s consumption expenditure cannot be fully explained
only by the variable(s) included in the regression model.

2.5 The Significance of the Stochastic Disturbance Term

As noted in Section 2.4, the disturbance term ui is a surrogate for all those variables that
are omitted from the model but that collectively affect Y. The obvious question is: Why not
introduce these variables into the model explicitly? Stated otherwise, why not develop a
multiple regression model with as many variables as possible? The reasons are many.

1. Vagueness of theory: The theory, if any, determining the behavior of Y may be, and
often is, incomplete. We might know for certain that weekly income X influences weekly
consumption expenditure Y, but we might be ignorant or unsure about the other variables
affecting Y. Therefore, ui may be used as a substitute for all the excluded or omitted vari-
ables from the model.

2. Unavailability of data: Even if we know what some of the excluded variables are and
therefore consider a multiple regression rather than a simple regression, we may not have
quantitative information about these variables. It is a common experience in empirical
analysis that the data we would ideally like to have often are not available. For example, in
principle we could introduce family wealth as an explanatory variable in addition to the in-
come variable to explain family consumption expenditure. But unfortunately, information
on family wealth generally is not available. Therefore, we may be forced to omit the wealth
variable from our model despite its great theoretical relevance in explaining consumption
expenditure.

3. Core variables versus peripheral variables: Assume in our consumption-income ex-
ample that besides income X1, the number of children per family X2, sex X3, religion X4,
education X5, and geographical region X6 also affect consumption expenditure. But it is quite
possible that the joint influence of all or some of these variables may be so small and at best
nonsystematic or random that as a practical matter and for cost considerations it does not pay
to introduce them into the model explicitly. One hopes that their combined effect can be
treated as a random variable ui .10

4. Intrinsic randomness in human behavior: Even if we succeed in introducing all the
relevant variables into the model, there is bound to be some “intrinsic” randomness in in-
dividual Y ’s that cannot be explained no matter how hard we try. The disturbances, the u’s,
may very well reflect this intrinsic randomness.

5. Poor proxy variables: Although the classical regression model (to be developed in
Chapter 3) assumes that the variables Y and X are measured accurately, in practice the data

9As a matter of fact, in the method of least squares to be developed in Chapter 3, it is assumed
explicitly that E(ui |Xi) = 0. See Sec. 3.2.
10A further difficulty is that variables such as sex, education, and religion are difficult to quantify.
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42 Part One Single-Equation Regression Models

may be plagued by errors of measurement. Consider, for example, Milton Friedman’s well-
known theory of the consumption function.11 He regards permanent consumption (Y p) as
a function of permanent income (X p). But since data on these variables are not directly ob-
servable, in practice we use proxy variables, such as current consumption (Y ) and current
income (X), which can be observable. Since the observed Y and X may not equal Y p and
X p, there is the problem of errors of measurement. The disturbance term u may in this case
then also represent the errors of measurement. As we will see in a later chapter, if there are
such errors of measurement, they can have serious implications for estimating the regres-
sion coefficients, the β’s.

6. Principle of parsimony: Following Occam’s razor,12 we would like to keep our re-
gression model as simple as possible. If we can explain the behavior of Y “substantially”
with two or three explanatory variables and if our theory is not strong enough to suggest
what other variables might be included, why introduce more variables? Let ui represent all
other variables. Of course, we should not exclude relevant and important variables just to
keep the regression model simple.

7. Wrong functional form: Even if we have theoretically correct variables explaining a
phenomenon and even if we can obtain data on these variables, very often we do not know
the form of the functional relationship between the regressand and the regressors. Is con-
sumption expenditure a linear (invariable) function of income or a nonlinear (invariable)
function? If it is the former, Yi = β1 + β2 Xi + ui is the proper functional relationship
between Y and X, but if it is the latter, Yi = β1 + β2 Xi + β3 X2

i + ui may be the correct
functional form. In two-variable models the functional form of the relationship can often
be judged from the scattergram. But in a multiple regression model, it is not easy to deter-
mine the appropriate functional form, for graphically we cannot visualize scattergrams in
multiple dimensions.

For all these reasons, the stochastic disturbances ui assume an extremely critical role in
regression analysis, which we will see as we progress.

2.6 The Sample Regression Function (SRF)

By confining our discussion so far to the population of Y values corresponding to the fixed
X’s, we have deliberately avoided sampling considerations (note that the data of Table 2.1
represent the population, not a sample). But it is about time to face up to the sampling prob-
lems, for in most practical situations what we have is but a sample of Y values correspond-
ing to some fixed X’s. Therefore, our task now is to estimate the PRF on the basis of the
sample information.

As an illustration, pretend that the population of Table 2.1 was not known to us and the
only information we had was a randomly selected sample of Y values for the fixed X’s
as given in Table 2.4. Unlike Table 2.1, we now have only one Y value corresponding to
the given X’s; each Y (given Xi) in Table 2.4 is chosen randomly from similar Y’s
corresponding to the same Xi from the population of Table 2.1.

11Milton Friedman, A Theory of the Consumption Function, Princeton University Press, Princeton, N.J.,
1957.
12“That descriptions be kept as simple as possible until proved inadequate,” The World of Mathematics,
vol. 2, J. R. Newman (ed.), Simon & Schuster, New York, 1956, p. 1247, or, “Entities should not be
multiplied beyond necessity,” Donald F. Morrison, Applied Linear Statistical Methods, Prentice Hall,
Englewood Cliffs, N.J., 1983, p. 58.
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Chapter 2 Two-Variable Regression Analysis: Some Basic Ideas 43

The question is: From the sample of Table 2.4 can we predict the average weekly con-
sumption expenditure Y in the population as a whole corresponding to the chosen X’s? In
other words, can we estimate the PRF from the sample data? As the reader surely suspects,
we may not be able to estimate the PRF “accurately” because of sampling fluctuations. To
see this, suppose we draw another random sample from the population of Table 2.1, as
presented in Table 2.5.

Plotting the data of Tables 2.4 and 2.5, we obtain the scattergram given in Figure 2.4. In
the scattergram two sample regression lines are drawn so as to “fit” the scatters reasonably
well: SRF1 is based on the first sample, and SRF2 is based on the second sample. Which of
the two regression lines represents the “true” population regression line? If we avoid the
temptation of looking at Figure 2.1, which purportedly represents the PR, there is no way
we can be absolutely sure that either of the regression lines shown in Figure 2.4 represents
the true population regression line (or curve). The regression lines in Figure 2.4 are known
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TABLE 2.4
A Random Sample from the
Population of Table 2.1

Y X

70 80
65 100
90 120
95 140

110 160
115 180
120 200
140 220
155 240
150 260

TABLE 2.5
Another Random Sample from the
Population of Table 2.1

Y X

55 80
88 100
90 120
80 140

118 160
120 180
145 200
135 220
145 240
175 260
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44 Part One Single-Equation Regression Models

as the sample regression lines. Supposedly they represent the population regression line,
but because of sampling fluctuations they are at best an approximation of the true PR. In
general, we would get N different SRFs for N different samples, and these SRFs are not
likely to be the same.

Now, analogously to the PRF that underlies the population regression line, we can
develop the concept of the sample regression function (SRF) to represent the sample
regression line. The sample counterpart of Eq. (2.2.2) may be written as 

Ŷi = β̂1 + β̂2 Xi (2.6.1)

where Ŷ is read as “Y-hat’’ or “Y-cap’’
Ŷi = estimator of E(Y | Xi )
β̂1 = estimator of β1

β̂2 = estimator of β2

Note that an estimator, also known as a (sample) statistic, is simply a rule or formula or
method that tells how to estimate the population parameter from the information provided by
the sample at hand. A particular numerical value obtained by the estimator in an application
is known as an estimate.13 It should be noted that an estimator is random, but an estimate is
nonrandom. (Why?)

Now just as we expressed the PRF in two equivalent forms, Eq. (2.2.2) and Eq. (2.4.2),
we can express the SRF in Equation 2.6.1 in its stochastic form as follows:

Yi = β̂1 + β̂2 Xi + û i (2.6.2)

where, in addition to the symbols already defined, û i denotes the (sample) residual term.
Conceptually û i is analogous to ui and can be regarded as an estimate of ui . It is introduced
in the SRF for the same reasons as ui was introduced in the PRF.

To sum up, then, we find our primary objective in regression analysis is to estimate the
PRF

(2.4.2)

on the basis of the SRF

(2.6.2)

because more often than not our analysis is based upon a single sample from some popula-
tion. But because of sampling fluctuations, our estimate of the PRF based on the SRF is at
best an approximate one. This approximation is shown diagrammatically in Figure 2.5.

Yi = β̂1 + β̂xi + ûi

Yi = β1 + β2 Xi + ui

13As noted in the Introduction, a hat above a variable will signify an estimator of the relevant
population value.
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For X = Xi , we have one (sample) observation, Y = Yi . In terms of the SRF, the
observed Yi can be expressed as

Yi = Ŷi + û i (2.6.3)

and in terms of the PRF, it can be expressed as

Yi = E(Y | Xi ) + ui (2.6.4)

Now obviously in Figure 2.5 Ŷi overestimates the true E(Y | Xi ) for the Xi shown therein.
By the same token, for any Xi to the left of the point A, the SRF will underestimate the true
PRF. But the reader can readily see that such over- and underestimation is inevitable
because of sampling fluctuations.

The critical question now is: Granted that the SRF is but an approximation of the PRF,
can we devise a rule or a method that will make this approximation as “close” as possible?
In other words, how should the SRF be constructed so that β̂1 is as “close” as possible to
the true β1 and β̂2 is as “close” as possible to the true β2 even though we will never know
the true β1 and β2?

The answer to this question will occupy much of our attention in Chapter 3. We note
here that we can develop procedures that tell us how to construct the SRF to mirror the PRF
as faithfully as possible. It is fascinating to consider that this can be done even though we
never actually determine the PRF itself.

2.7 Illustrative Examples

We conclude this chapter with two examples.
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EXAMPLE 2.1
Mean Hourly
Wage by
Education

Table 2.6 gives data on the level of education (measured by the number of years of school-
ing), the mean hourly wages earned by people at each level of education, and the number
of people at the stated level of education. Ernst Berndt originally obtained the data
presented in the table, and he derived these data from the population survey conducted
in May 1985.14

Plotting the (conditional) mean wage against education, we obtain the picture in
Figure 2.6. The regression curve in the figure shows how mean wages vary with the level
of education; they generally increase with the level of education, a finding one should not
find surprising. We will study in a later chapter how variables besides education can also
affect the mean wage.

Years of Schooling Mean Wage, $ Number of People

6 4.4567 3
7 5.7700 5
8 5.9787 15
9 7.3317 12

10 7.3182 17
11 6.5844 27
12 7.8182 218
13 7.8351 37
14 11.0223 56
15 10.6738 13
16 10.8361 70
17 13.6150 24
18 13.5310 31

Total 528

181614121086
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Mean value
FIGURE 2.6
Relationship between
mean wages and
education.

TABLE 2.6
Mean Hourly Wage
by Education

14Ernst R. Berndt, The Practice of Econometrics: Classic and Contemporary, Addison Wesley, Reading,
Mass., 1991. Incidentally, this is an excellent book that the reader may want to read to find out how
econometricians go about doing research.

Source: Arthur S.
Goldberger, Introductory
Econometrics, Harvard
University Press, Cambridge,
Mass., 1998, Table 1.1, p. 5
(adapted).
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EXAMPLE 2.2
Mathematics SAT
Scores by Family
Income

Table 2.10 in Exercise 2.17 provides data on mean SAT (Scholastic Aptitude Test) scores on
critical reading, mathematics, and writing for college-bound seniors based on 947,347
students taking the SAT examination in 2007. Plotting the mean mathematics scores on
mean family income, we obtain the picture in Figure 2.7.

Note: Because of the open-ended income brackets for the first and last income
categories shown in Table 2.10, the lowest average family income is assumed to be
$5,000 and the highest average family income is assumed to be $150,000.
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FIGURE 2.7
Relationship between
mean mathematics
SAT scores and mean
family income.

As Figure 2.7 shows, the average mathematics score increases as average family
income increases. Since the number of students taking the SAT examination is quite
large, it probably represents the entire population of seniors taking the examination.
Therefore, the regression line sketched in Figure 2.7 probably represents the population
regression line.

There may be several reasons for the observed positive relationship between the two
variables. For example, one might argue that students with higher family income can
better afford private tutoring for the SAT examinations. In addition, students with higher
family income are more likely to have parents who are highly educated. It is also possible
that students with higher mathematics scores come from better schools. The reader can
provide other explanations for the observed positive relationship between the two
variables.
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EXERCISES

Summary and
Conclusions

1. The key concept underlying regression analysis is the concept of the conditional
expectation function (CEF), or population regression function (PRF). Our objective
in regression analysis is to find out how the average value of the dependent variable
(or regressand) varies with the given value of the explanatory variable (or regressor).

2. This book largely deals with linear PRFs, that is, regressions that are linear in the
parameters. They may or may not be linear in the regressand or the regressors.

3. For empirical purposes, it is the stochastic PRF that matters. The stochastic
disturbance term ui plays a critical role in estimating the PRF.

4. The PRF is an idealized concept, since in practice one rarely has access to the entire
population of interest. Usually, one has a sample of observations from the population.
Therefore, one uses the stochastic sample regression function (SRF) to estimate the
PRF. How this is actually accomplished is discussed in Chapter 3.

Questions
2.1. What is the conditional expectation function or the population regression function?

2.2. What is the difference between the population and sample regression functions? Is
this a distinction without difference?

2.3. What is the role of the stochastic error term ui in regression analysis? What is the
difference between the stochastic error term and the residual, û i ?

2.4. Why do we need regression analysis? Why not simply use the mean value of the
regressand as its best value?

2.5. What do we mean by a linear regression model?

2.6. Determine whether the following models are linear in the parameters, or the
variables, or both. Which of these models are linear regression models?

Model Descriptive Title

a. Yi = β1 + β2

(
1
Xi

)
+ ui Reciprocal

b. Yi = β1 + β2 ln Xi + ui Semilogarithmic
c. ln Yi = β1 + β2 Xi + ui Inverse semilogarithmic
d. ln Yi = ln β1 + β2 ln Xi + ui Logarithmic or double logarithmic

e. ln Yi = β1 − β2

(
1
Xi

)
+ ui Logarithmic reciprocal

Note: ln = natural log (i.e., log to the base e); ui is the stochastic disturbance term. We will study these models in Chapter 6.

2.7. Are the following models linear regression models? Why or why not?

a. Yi = eβ1+β2 Xi +u i

b. Yi = 1

1 + eβ1+β2 Xi +u i

c. ln Yi = β1 + β2

(
1

Xi

)
+ ui

d. Yi = β1 + (0.75 − β1)e−β2(Xi −2) + ui

e. Yi = β1 + β3
2 Xi + ui
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2.8. What is meant by an intrinsically linear regression model? If β2 in Exercise 2.7d
were 0.8, would it be a linear or nonlinear regression model?

2.9. Consider the following nonstochastic models (i.e., models without the stochastic
error term). Are they linear regression models? If not, is it possible, by suitable
algebraic manipulations, to convert them into linear models?

a. Yi = 1

β1 + β2 Xi

b. Yi = Xi

β1 + β2 Xi

c. Yi = 1

1 + exp (−β1 − β2 Xi )

2.10. You are given the scattergram in Figure 2.8 along with the regression line. What
general conclusion do you draw from this diagram? Is the regression line sketched in
the diagram a population regression line or the sample regression line?

2.11. From the scattergram given in Figure 2.9, what general conclusions do you draw?
What is the economic theory that underlies this scattergram? (Hint: Look up any
international economics textbook and read up on the Heckscher–Ohlin model of
trade.)

2.12. What does the scattergram in Figure 2.10 reveal? On the basis of this diagram, would
you argue that minimum wage laws are good for economic well-being?

2.13. Is the regression line shown in Figure I.3 of the Introduction the PRF or the SRF?
Why? How would you interpret the scatterpoints around the regression line? Besides
GDP, what other factors, or variables, might determine personal consumption
expenditure?
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Growth rates of real
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for 50 developing
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Source: The World Bank, World
Development Report 1995,
p. 55. The original source is
UNIDO data, World Bank data.
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Source: World Bank, World
Development Report 1995,
p. 75.

Empirical Exercises
2.14. You are given the data in Table 2.7 for the United States for years 1980–2006.

a. Plot the male civilian labor force participation rate against male civilian unemploy-
ment rate. Eyeball a regression line through the scatter points. A priori, what is the ex-
pected relationship between the two and what is the underlying economic theory?
Does the scattergram support the theory?
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b. Repeat (a) for females.

c. Now plot both the male and female labor participation rates against average hourly
earnings (in 1982 dollars). (You may use separate diagrams.) Now what do you find?
And how would you rationalize your finding?

d. Can you plot the labor force participation rate against the unemployment rate and
the average hourly earnings simultaneously? If not, how would you verbalize the
relationship among the three variables?

2.15. Table 2.8 gives data on expenditure on food and total expenditure, measured in
rupees, for a sample of 55 rural households from India. (In early 2000, a U.S. dollar
was about 40 Indian rupees.)
a. Plot the data, using the vertical axis for expenditure on food and the horizontal axis for

total expenditure, and sketch a regression line through the scatterpoints.

b. What broad conclusions can you draw from this example?

Year CLFPRM1 CLFPRF2 UNRM3 UNRF4 AHE825 AHE6

1980 77.40000 51.50000 6.900000 7.400000 7.990000 6.840000
1981 77.00000 52.10000 7.400000 7.900000 7.880000 7.430000
1982 76.60000 52.60000 9.900000 9.400000 7.860000 7.860000
1983 76.40000 52.90000 9.900000 9.200000 7.950000 8.190000
1984 76.40000 53.60000 7.400000 7.600000 7.950000 8.480000
1985 76.30000 54.50000 7.000000 7.400000 7.910000 8.730000
1986 76.30000 55.30000 6.900000 7.100000 7.960000 8.920000
1987 76.20000 56.00000 6.200000 6.200000 7.860000 9.130000
1988 76.20000 56.60000 5.500000 5.600000 7.810000 9.430000
1989 76.40000 57.40000 5.200000 5.400000 7.750000 9.800000
1990 76.40000 57.50000 5.700000 5.500000 7.660000 10.190000
1991 75.80000 57.40000 7.200000 6.400000 7.580000 10.500000
1992 75.80000 57.80000 7.900000 7.000000 7.550000 10.760000
1993 75.40000 57.90000 7.200000 6.600000 7.520000 11.030000
1994 75.10000 58.80000 6.200000 6.000000 7.530000 11.320000
1995 75.00000 58.90000 5.600000 5.600000 7.530000 11.640000
1996 74.90000 59.30000 5.400000 5.400000 7.570000 12.030000
1997 75.00000 59.80000 4.900000 5.000000 7.680000 12.490000
1998 74.90000 59.80000 4.400000 4.600000 7.890000 13.000000
1999 74.70000 60.00000 4.100000 4.300000 8.000000 13.470000
2000 74.80000 59.90000 3.900000 4.100000 8.030000 14.000000
2001 74.40000 59.80000 4.800000 4.700000 8.110000 14.530000
2002 74.10000 59.60000 5.900000 5.600000 8.240000 14.950000
2003 73.50000 59.50000 6.300000 5.700000 8.270000 15.350000
2004 73.30000 59.20000 5.600000 5.400000 8.230000 15.670000
2005 73.30000 59.30000 5.100000 5.100000 8.170000 16.110000
2006 73.50000 59.40000 4.600000 4.600000 8.230000 16.730000

Table citations below refer to the source document.
1CLFPRM, Civilian labor force participation rate, male (%), Table B-39, p. 277.
2CLFPRF, Civilian labor force participation rate, female (%), Table B-39, p. 277.
3UNRM, Civilian unemployment rate, male (%) Table B-42, p. 280.
4UNRF, Civilian unemployment rate, female (%) Table B-42, p. 280.
5AHE82, Average hourly earnings (1982 dollars), Table B-47, p. 286.
6AHE, Average hourly earnings (current dollars), Table B-47, p. 286.

TABLE 2.7
Labor Force
Participation Data
for U.S. for
1980–2006

Source: Economic Report of the
President, 2007.
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c. A priori, would you expect expenditure on food to increase linearly as total expendi-
ture increases regardless of the level of total expenditure? Why or why not? You can
use total expenditure as a proxy for total income.

2.16. Table 2.9 gives data on mean Scholastic Aptitude Test (SAT) scores for college-
bound seniors for 1972–2007. These data represent the critical reading and mathe-
matics test scores for both male and female students. The writing category was
introduced in 2006. Therefore, these data are not included.
a. Use the horizontal axis for years and the vertical axis for SAT scores to plot the critical

reading and math scores for males and females separately.

b. What general conclusions do you draw from these graphs?

c. Knowing the critical reading scores of males and females, how would you go about
predicting their math scores?

d. Plot the female math scores against the male math scores. What do you observe?

Food Total Food Total
Observation Expenditure Expenditure Observation Expenditure Expenditure

1 217.0000 382.0000 29 390.0000 655.0000
2 196.0000 388.0000 30 385.0000 662.0000
3 303.0000 391.0000 31 470.0000 663.0000
4 270.0000 415.0000 32 322.0000 677.0000
5 325.0000 456.0000 33 540.0000 680.0000
6 260.0000 460.0000 34 433.0000 690.0000
7 300.0000 472.0000 35 295.0000 695.0000
8 325.0000 478.0000 36 340.0000 695.0000
9 336.0000 494.0000 37 500.0000 695.0000

10 345.0000 516.0000 38 450.0000 720.0000
11 325.0000 525.0000 39 415.0000 721.0000
12 362.0000 554.0000 40 540.0000 730.0000
13 315.0000 575.0000 41 360.0000 731.0000
14 355.0000 579.0000 42 450.0000 733.0000
15 325.0000 585.0000 43 395.0000 745.0000
16 370.0000 586.0000 44 430.0000 751.0000
17 390.0000 590.0000 45 332.0000 752.0000
18 420.0000 608.0000 46 397.0000 752.0000
19 410.0000 610.0000 47 446.0000 769.0000
20 383.0000 616.0000 48 480.0000 773.0000
21 315.0000 618.0000 49 352.0000 773.0000
22 267.0000 623.0000 50 410.0000 775.0000
23 420.0000 627.0000 51 380.0000 785.0000
24 300.0000 630.0000 52 610.0000 788.0000
25 410.0000 635.0000 53 530.0000 790.0000
26 220.0000 640.0000 54 360.0000 795.0000
27 403.0000 648.0000 55 305.0000 801.0000
28 350.0000 650.0000

Source: Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for Developing Countries, Routledge, New York, 1998, p. 457.

TABLE 2.8 Food and Total Expenditure (Rupees)
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2.17. Table 2.10 presents data on mean SAT reasoning test scores classified by income for
three kinds of tests: critical reading, mathematics, and writing. In Example 2.2, we
presented Figure 2.7, which plotted mean math scores on mean family income.
a. Refer to Figure 2.7 and prepare a similar graph relating average critical reading scores

to average family income. Compare your results with those shown in Figure 2.7.

Critical Reading Mathematics

Year Male Female Total Male Female Total

1972 531 529 530 527 489 509
1973 523 521 523 525 489 506
1974 524 520 521 524 488 505
1975 515 509 512 518 479 498
1976 511 508 509 520 475 497
1977 509 505 507 520 474 496
1978 511 503 507 517 474 494
1979 509 501 505 516 473 493
1980 506 498 502 515 473 492
1981 508 496 502 516 473 492
1982 509 499 504 516 473 493
1983 508 498 503 516 474 494
1984 511 498 504 518 478 497
1985 514 503 509 522 480 500
1986 515 504 509 523 479 500
1987 512 502 507 523 481 501
1988 512 499 505 521 483 501
1989 510 498 504 523 482 502
1990 505 496 500 521 483 501
1991 503 495 499 520 482 500
1992 504 496 500 521 484 501
1993 504 497 500 524 484 503
1994 501 497 499 523 487 504
1995 505 502 504 525 490 506
1996 507 503 505 527 492 508
1997 507 503 505 530 494 511
1998 509 502 505 531 496 512
1999 509 502 505 531 495 511
2000 507 504 505 533 498 514
2001 509 502 506 533 498 514
2002 507 502 504 534 500 516
2003 512 503 507 537 503 519
2004 512 504 508 537 501 518
2005 513 505 508 538 504 520
2006 505 502 503 536 502 518
2007 504 502 502 533 499 515

Note: For 1972–1986 a formula was applied to the original mean and standard deviation to convert the mean to the recentered scale. For
1987–1995 individual student scores were converted to the recentered scale and then the mean was recomputed. From 1996–1999, nearly
all students received scores on the recentered scale. Any score on the original scale was converted to the recentered scale prior to
computing the mean. From 2000–2007, all scores are reported on the recentered scale.

TABLE 2.9
Total Group Mean
SAT Reasoning Test
Scores: College-
Bound Seniors,
1972–2007

Source: College Board, 2007.
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Family Number of Critical Reading Mathematics Writing

Income ($) Test Takers Mean SD Mean SD Mean SD

�10,000 40610 427 107 451 122 423 104
10000–20000 72745 453 106 472 113 446 102
20000–30000 61244 454 102 465 107 444 97
30000–40000 83685 476 103 485 106 466 98
40000–50000 75836 489 103 486 105 477 99
50000–60000 80060 497 102 504 104 486 98
60000–70000 75763 504 102 511 103 493 98
70000–80000 81627 508 101 516 103 498 98
80000–100000 130752 520 102 529 104 510 100
�100000 245025 544 105 556 107 537 103

TABLE 2.10
SAT Reasoning Test
Classified by Family
Income

Source: College Board, 2007
College-Bound Seniors, 
Table 11.

b. Repeat (a), relating average writing scores to average family income and compare your
results with the other two graphs.

c. Looking at the three graphs, what general conclusion can you draw?
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